November 12, 2006 doc.: IEEE 802.15-0760-03-003c Project: IEEE

November 12, 2006 doc.: IEEE 802.15-0760-03-003c Project: IEEE

November 12, 2006 doc.: IEEE 802.15-0760-03-003c Project: IEEE P802.15 Working Group for Wireless Personal Area Networks (WPANs) Submission Title: [mmWave OFDM Physical Layer Proposal (Previously TensorCom Physical Layer Proposal)] Date Submitted: [ September 19, 2007] Source: [Ismail Lakkis(1), BeomJin (Paul) Jeon(2), Pascal Pagani(3) , Ekhard Grass (4) , Shuzo Kato(5), Seongsoo Kim(6), Edwin Kwon(6), John Marshall(7), Chiu Ngo(6), Jisung Oh(6)] Company [ (1) Tensorcom, (2) LG Electronics Inc., (3) France Telecom, (4) IHP, (5) NICT, (6) Samsung Electronics, Co., Ltd, (7)SiBEAM, Inc.] Address [See Next Page for Contact Info.] Voice:[], FAX: [], E-Mail:[] Re: [This submission is in response to the TG3C call for Proposals (IEEE P802.15-07-0586-02-003c)] Abstract: [Physical layer proposal for IEEE 802.15 TG3C.] Purpose: [For considereation and discussion by IEEE 802.15 TG3C.] Notice: This document has been prepared to assist the IEEE P802.15. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release: The contributor acknowledges and accepts that this contribution becomes the property of IEEE and may be made publicly available by P802.15. Submissio n Slide 1 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Contact Information Ismail Lakkis Beomjin (Paul) Jeon, & YongHoon Kim IHP Email: [email protected] Pascal Pagani and Wei Li SiBEAM, Inc. Voice : 408-245-3120 Email : [email protected] Echard Grass LG Electronics Inc. Voice : 82-2-526-4065 Email : [email protected] , [email protected] John Marshall Tensorcom Corporation Voice: 858-231-9753 Email: [email protected] France Telecome Voice:+33-2-99-12-48-72 Email: [email protected] Shuza Kato Submissio n NICT Voice: +81-46-847-5083 [email protected] Slide 2 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Contact Information Seongsoo Kim, Edwin Kwon, Chiu Ngo, and Jisung Oh Samsung Electronics Co., Ltd 416 Maetan-3Dong, Youngtong-Gu, Suwon-Shi, Gyungki-Do 443-742, Korea seongsoo1.kim at samsung dot com, cy dot kwon at samsung dot com, chiu.ngo at samsung dot com, jisung0714.oh at samsung.com

Gary Baldwin, Dengwei Fu, James P. K. Gilb, Jeff Gilbert, Ricky Ho, John Marshall, Steve Pope, Bernard Shung, Karim Toussi SiBEAM, Inc. 555 N Mathilda Ave Ste 100, Sunnyvale, CA 94085, +1 408 245 3120 gbaldwin at sibeam dot com, dfu at sibeam dot com, gilb at ieee dot org, jgilbert at sibeam dot com, kpho at sibeam dot com, spope at sibeam dot com, bshung at sibeam dot com, kntoussi at sibeam dot com Yasuhisa Nakajima Sony Corporation Submissio n TV Business Group, Sony Corporation jim dot nakajima at jp dot sony dot com Slide 3 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c mmWave OFDM Physical Layer Submissio n Slide 4 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Frequency Band Plan Channel Number Low Freq. (GHz) Center Freq. (GHz) High Freq. (GHz) OFDM Chip Rate (MHz) SC Chip Rate (MHz) 1 57.240 58.320 59.400 2592 1728 2 59.400 60.480 61.560 2592 1728 3 61.560 62.640 63.720 2592 1728 4 63.720 64.800 65.880 2592 1728 2160 MHz 1728 MHz 240 MHz 2 1

57 Submissio n 120 MHz 1296 MHz 58 59 60 4 3 61 62 Slide 5 63 64 65 66 fGHz Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c PPDU Structure Transmit Order (from left to right) TIME SCRAMBLER MCS STAMP ID (24 bits) (4 bits) (6 bits) T0:T23 0:23 S0:S3 24:27 PHY Header 28 octets M0:M5 28:33 FRAME LENGTH (16 bits) CES MODE (1 bit) L0:L15 34:49 CE0 50 CP MODE (2 bits) CP0:CP1 PC0:PC1 51:52 53:54 MAC HCS Header 10 Octets 2 Octets PLCP Preamble PCES MODE (2 bits) RS Parity Symbols 16 Octets PREAMBLE TYPE (2 bits) P0:P1 55:56 IFS NUMBER OF MODE SUBFRAMES (2 bits) (4 bits) I0:I1 57:58

MAC SubHeader 80 Octets UEP-MAPPING INDICATOR (1 bit) INTERLEAVER TYPE (1 bit) ANTENNA DIRECTION (8 bits) RESERVED BITS 151 bits U0 63 IT 64 D0:D7 65:72 R0:R150 73:223 N0:N3 59:62 HCS 2 Octets RS Parity Symbols 16 Octets Frame Header PSDU 43Mbps, 171Mbps, 342Mbps, 684Mbps 58Mbps to 7.35Gbps Frame Payload 0-65535 Octets Submissio n Slide 6 FCS Tail Bits Pad 4 Octets 0(6) Bits Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c MAC SubHeader Transmission direction Frame control 2 Octets PNID DestID SrcID 2 Octets 1 Octet 1 Octet Fragmentation control 3 Octets Stream index 1 Octet 10 octets PHY MAC Header Header HCS RS Parity MAC Symbols SubHeader Subframe 1 subheader 40 bits MCS 6 bits CRC Retransmission Present policy 1 bit

2 bits Subframe 2 subheader 40 bits MSDU Number 4 bits Fragment Number 4 bits HCS RS Parity Symbols Subframe 16 subheader 40 bits Subframe Length 12 bits Subframe Information 2 bits Subframe contains MSB/LSB MSB LSB Submissio n Slide 7 Selective ACK Request 1 bit Reserved 8 bits Request Sel-ACK Follow ACK policy in MAC header Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Subframes & Sel-ACK (Selective ACK) Frame type = Sel-ACK ACK policy = no-ACK PHY MAC Header Header HCS Subframe 1 MAC SubHeader HCS Subframe 1 MSB LSB Subframe n MSB LSB Indicate which part (MSB, LSB) has an error MSB FCS LSB FCS Subframe Submissio n Slide 8 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c OFDM signaling Mode Outer Reed Solomon (K+16,K) Inner Hamming(12,8) PSDU Rates Data Rate Mbps Rd

Header Rate Chip Rate Mbps MHz Rh RC Modulation Scheme Frequency Spreading Factor: L f Outer FEC Type Outer FEC Rate R OFEC I nner FEC Type I nner FEC Rate R I FEC FEC Rate R FEC Spread & Coded Bits/ symbol N SCBPS Coded Bits Per Symbol N CBPS Data I nfo Bits* Per Symbol N I BPSD 58 43 2592 QPSK 32 RS(216,200) 0.926 Ham(12,8) 0.667 0.617 672 21 14 117 43 2592 QPSK 16 RS(216,200) 0.926 Ham(12,8) 0.667 0.617 672 42 28 467 171 2592 QPSK 4 RS(216,200) 0.926 Ham(12,8) 0.667 0.617 672

168 112 933 342 2592 QPSK 2 RS(216,200) 0.926 Ham(12,8) 0.667 0.617 672 336 224 Header Rates Base header Base+optional Chip Rate Modulation Frequency Outer FEC Rate (Mbps) Header Rate MHz Scheme Spreading Rate R BH RH RC 43 171 342 684 48 193 386 708 2592 2592 2592 2592 Submissio n QPSK QPSK QPSK QPSK Outer FEC I nner FEC I nner FEC Rate FEC Rate Spread & Coded Coded Bits Bits/ symbol Per Symbol Data I nfo Bits* Number of Used Symbols Per Symbol Factor: L f R OFEC Type Type R I FEC R FEC N SCBPS N CBPS N I BPSD Base header Optional header 32 8 4 2 RS(56,40) RS(56,40) RS(56,40) RS(56,40)

0.714 0.714 0.714 0.714 Ham(12,8) Ham(12,8) Ham(12,8) Ham(12,8) 0.667 0.667 0.667 0.667 0.476 0.476 0.476 0.476 672 672 672 672 21 84 168 336 14 56 112 224 32 8 4 2 56 14 7 4 Slide 9 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Frame Format 512 chips ~ 197.5ns CP 32, 64, 96, & 128 OFDM Data Symbol CP OFDM Data Symbol CP OFDM Data Symbol 2 symbols PCES Data Block PCES Data Block PCES Data Block 128, 256 or 512 symbols when PCES is present PLCP Preamble PLCP Header Packet/Frame Sync Sequence 8, 4, or 2 symbols SFD Start Frame Delimiter PSDU CES Channel Estimation Sequence CES Channel Estimation Sequence 128 s512 Submissio n s512 s512 -s512 aCP

u512 Slide 10 bCP v512 Optional Extended CES (2 symbols) Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Rate-Dependent Parameters (LDPC) Data Rate Header Rate Chip Rate Modulation Frequency Outer Outer FEC I nner I nner FEC FEC Spread & Coded Coded Bits Data I nfo Bits* Mbps Mbps MHz Scheme Spreading FEC Rate FEC Rate Rate Bits/ symbol Per Symbol Per Symbol Rd Rh RC Factor: L f Type R OFEC Type R I FEC R FEC N SCBPS N CBPS N I BPSD 700 342 2592 QPSK 2 RS(216,200) 0.926 LDPC(672,336) 0.500 0.463 672 336

168 1400 684 2592 QPSK 1 RS(216,200) 0.926 LDPC(672,336) 0.500 0.463 672 672 336 2100 684 2592 QPSK 1 RS(216,200) 0.926 LDPC(672,504) 0.750 0.694 672 672 504 2450 684 2592 QPSK 1 RS(216,200) 0.926 LDPC(672,588) 0.875 0.810 672 672 588 2800 684 2592 16QAM 1 RS(216,200) 0.926 LDPC(672,336) 0.500 0.463 1344 1344 672 4200 684 2592 16QAM 1 RS(216,200) 0.926

LDPC(672,504) 0.750 0.694 1344 1344 1008 4900 684 2592 16QAM 1 RS(216,200) 0.926 LDPC(672,588) 0.875 0.810 1344 1344 1176 6300 684 2592 64QAM 1 RS(216,200) 0.926 LDPC(672,504) 0.750 0.694 2016 2016 1512 7350 684 2592 64QAM 1 RS(216,200) 0.926 LDPC(672,588) 0.875 0.810 2016 2016 1764 RS encoded data bits with an outer RS(216,200) UEP Mode Submissio n Data Rate(Mbps) Modulation MSB Coding rate LSB Coding Rate 1750 Mbps QPSK LDPC(672,336) LDPC(672,504) 2625 Mbps QPSK LDPC(672,504)

LDPC(672,588) Slide 11 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Rate-Dependent Parameters (Convolutional) Convolutional Code Rate HRC mode index Coding Mode MSB Modulation [7] [6] [5] 0 1 QPSK 2 3 EEP 4 5 7 8 UEP 9 10 11 Submissio n 16QAM 64QAM 6 MSB/(LSB)-only transmission Net data rate (Gbps) LSB [4] [3] [2] [1] [0] 1/3 1.0 1/2 1.5 2/3 2.0 1/2 3.0 2/3 4.0 1/2 4.5 2/3 6.0 QPSK 4/7 4/5 2.0 16QAM 4/7

4/5 4.0 64QAM 4/7 4/5 6.0 1/3 (1/3) 1.0 2/3 (2/3) 2.0 QPSK Slide 12 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Timing-Related Parameters Parameter RC TC N FFT ND NP NG N DC N RES NU N CP Df BU T FFT T CP T SYM F SYM N CPSYM Description value Unit Formula Chip rate Chip duration 2592 0.386 MHz ns = 1/ R C FFT Size Number of data subcarriers Total number of pilot subcarriers Number of guard subcarriers Number of DC subcarriers Number of reserved subcarriers* Number of useful subcarriers Cyclic prefix length Subcarrier frequency spacing Used bandwidth I FFT/ FFT duration Cyclic prefix duration Symbol duration Symbol rate Number of chips per symbol 512 336 16 141 3 16 352 subcarriers subcarriers subcarriers subcarriers subcarriers subcarriers subcarriers Chips MHz MHz ns ns ns MHz Chips = R C / N FFT = N U D f = 1 /D f = N CP T C

= T FFT + T CP = 1/ T SYM = N FFT + N CP 32 64 12.35 209.88 4.765 544 96 5.0625 1782 197.53 37.04 24.69 234.57 222.22 4.5 4.263 576 608 128 49.38 246.91 4.05 640 * Allocated for PAPR and OOB power reduction Submissio n Slide 13 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Frame-Related Parameters Parameter Description N sync Number of symbols in the packet/ frame synchronization sequence T sync Duration of the packet/ frame synchronization sequence N ces Number of symbols in the channel estimation sequence T ces N pre T pre N hdr T hdr Value Long preamble: Medium preamble: Short preamble: Long preamble: Medium preamble: Short preamble: Long preamble: Medium preamble: Short preamble: Long preamble: Medium preamble: Short preamble: Long preamble: medium preamble: short preamble: Long preamble: Medium preamble: Short preamble: Long header: Medium I Header: Medium I I Header: Short Header: Long header: Medium I header: Medium I I header: Duration of the channel estimation sequence Number of symbols in the PLCP preamble Duration of the PLCP preamble Number of symbols in the header Duration of the PHY header (1) 9 5 3 1.778 0.988 0.593 2 2

1 0.395 0.395 0.198 11 7 4 2.173 1.383 0.790 84 8 2 1 1.580 0.395 0.198 ms ms ms ms ms ms ms ms ms ms ms ms 0.312 ms Short header: N RS Number of Reed solomon Blocks ceil[(LENGTH+4)/ 200] N LDPC Number of LDPC Blocks ceil[(LENGTH+4+16N RS )/ (84R I nner )] N frame Number of symbols in the data field T frame N packet T packet Duration of the data field Number of symbols in the packet Duration of the packet ceil{[8LENGTH+32+128N RS +676(1-Rinner ) N LDPC ]/ N SCBPS } N frame T SYM N pre + N hdr + N frame T pre + T hdr + T frame (1) Duration is based on the default CP of 64 Submissio n Slide 14 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Long: Tpre = 2.173ms, Npre = 11 Medium: Tpre = 1.383ms, Npre = 07 Short: Tpre = 0.790ms, Npre = 04 The Preambles PLCP Preamble Packet/Frame Sync Sequence 8, 4, or 2 symbols SFD Start Frame Delimiter CES Channel Estimation Sequence CES Channel Estimation Sequence 128 s512 s512 s512 -s512

aCP u512 bCP 128 v512 aCP u512 bCP v512 Three preambles are defined: Long preamble : 8 sync symbols, 1 SFD symbol, 2 CES symbols Medium preamble : 4 sync symbols, 1 SFD symbol, 2 CES symbols Short preamble : 2 sync symbols, 1 SFD symbol, 1 CES symbol Different preamble lengths reduces overhead and latency and enable efficient beamforming For data transmission, switching from long to medium or short preamble is upon device request. First packet shall use the long PLCP preamble, the remaining packets may use either one of the three preambles. When using medium or short preamble, packets shall be separated by MIFS. For beamforming, different preamble lengths are used to maintain a balanced spreading gainantenna gain A unique preamble sequence set is assigned to each piconet within the same frequency channel (frequency & spatial reuse). Submissio n Slide 15 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c The Preambles Four preamble sequence sets (labeled by the parameter m) are provided for the purpose of frequency/spatial reuse A preamble sequence set consists of a base sequence s512,m and two CES sequences u512,m and v512,m. The length 512 base sequence s512,m is the Kronecker product of a length 4 cover sequence, c4,m and a length 128 modified Golay sequence u128,m. s512,m[n] = c4,m[floor(n/128)]u128,m[n mod 128] n=0:511 The cover sequences and modified Golay sequences are listed in Tables 1 & 2 respectively. The base sequences occupy four non-overlapping frequency bin sets, and therefore are orthogonal in time and frequency domain. The mth base sequence occupies frequency bins m, m+4, m+8, m+12, Modified Golay sequences, are obtained from Golay sequences using time (or frequency) domain filtering to guarantee that only the used subcarriers are populated rather than the entire 512 subcarriers. Submissio n Slide 16 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c The Preambles DD 0 input xn W0 + 1 + + DD W1 + DD M 1 + + xn a n + - WM 1 + xn b n + function [a,b] = golaySub(M,N,D,W); a = [1 zeros(1,N-1)];b = a; for m=1:M,

ii = mod([0:N-1]-D(m),N); an = W(m)*a + b(ii+(1)); bn = W(m)*a - b(ii+(1)); a = an;b = bn; end; return; Golay complementary sequences (denoted a and b) of length N = 2M are specified by: 1. A delay vector D of length M with distinct elements from the set 2 m with m = 0:M-1; 2. A seed vector W of length M with elements from the QPSK constellation (1, j); The receiver may use the efficient 2-levels (on I & Q) low-complexity Golay matched filter shown above for packet and frame detection. Submissio n Slide 17 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c The Preambles The length 512 CES sequences u512,m and v512,m are modified complementary Golay sequences derived from Golay sequences a512,m and b512,m . They are listed in Table 3. Modified complementary Golay sequences enable perfect channel estimation in both time and frequency domains The Golay matched filter (shown before) can be used to provide simultaneously matched filter outputs to codes a and b. Combining the two outputs appropriately provide a perfect channel estimation in time domain; Frequency domain channel estimation is done in the conventional way. The complementarity property is conserved in frequency domain. OFDM systems can benefit from time-domain channel estimation due to dimensionality (ranking) issue; The Pilot CES (PCES) field is an optional field. When present, it is equivalent to the CES field and is repeated periodically to allow channel tracking. Three periods are provided which correspond to pedestrian speeds of 1, 3, and 6m/s. Submissio n Slide 18 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Frame Header Encoding Process PHY Header 28 Octets MAC Header 10 Octets MAC Subheader 80 Octets Header Check Sequence Calculation Header Check Sequence Calculation Append and Scramble Append and Scramble Scrambled MAC Header/HCS Scrambled MAC Subheader Shortened (56,40) Reed-Solomon Shortened (98,82) Reed-Solomon Scrambled PHY Header 28 Octets MAC Header 10 Octets

Scrambled HCS 2 Octets Reed-Solomon Parity 16 Octets MAC Subheader 80 Octets OFDM Modulator Submissio n Slide 19 HCS 2 Octets QPSK Mapper Reed-Solomon Parity 16 Octets FEC Encoder Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c The PHY Header TIME SCRAMBLER MCS STAMP ID (24 bits) (4 bits) (6 bits) T0:T23 0:23 S0:S3 24:27 FRAME LENGTH (16 bits) CES MODE (1 bit) L0:L15 34:49 CE0 50 M0:M5 28:33 CP MODE (2 bits) PCES MODE (2 bits) CP0:CP1 PC0:PC1 51:52 53:54 PREAMBLE TYPE (2 bits) IFS NUMBER OF MODE SUBFRAMES (2 bits) (4 bits) P0:P1 55:56 I0:I1 57:58 N0:N3 59:62 UEP-MAPPING INDICATOR (1 bit) INTERLEAVER TYPE (1 bit) ANTENNA DIRECTION (8 bits) RESERVED BITS

151 bits U0 63 IT 64 D0:D7 65:72 R0:R150 73:223 MCS M0:M5 Rate (Mbps) Scrambler Seed S0:S3 Scrambler Initial State PCES C0:C1 Type of Preamble Used for next packet 000000 50 abcd 1101 0000 101a bcd 00 PCES Not present 000001 175 01 PCES repeated every 128 symbols 10 PCES repeated every 256 symbols 11 PCES repeated every 512 symbols 000010 700 000011 1400 000100 2100 000101 2450 000110 2800 000111 4200 001000 4900 001001 6300 001010 7350 001011-111111 Reserved Submissio n CP CP0:CP1 CP Size CES CE0:CE1 CES Size 00 32

0 2 01 64 1 4 10 96 11 128 IFS Mode I0:I1 SIFS value MIFS value 00 2.5 ms 1.0 ms 01 6.0 ms 2.5 ms 10 0.75 ms 0.25 ms 11 Slide 20 Reserved Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Transmitter Reference diagram Frame Payload FCS Pad Bits (zeros) Append & Scramble Scrambled Frame Payload LENGTH octets Scrambled FCS 32b Scrambled Pad Bits Npad bits FEC Coder, Puncturer & Interleaver QPSK/QAM Mapper Preamble, Pilot/DC Insertion Tone Interleaver LPF Symbol Shaper OFDM Modulator Scrambled PSDU MixedSig, Analog & RF Submissio n Slide 21 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c

The Scrambler sn Serial Data In Scrambled/Descrambled Serial Data Out xn D xn-1 Seed Value: xinit = [x-1 x-2 x-15] D vn xn-14 D D xn-15 PRBS out first 16 bits: [x0 x1 x15] for a=b=c=d=0 1101 0000 101a bcd 0001 1110 0011 1010 matlab code function [dataOut] = tcScrambler(dataIn,a,b,c,d) shiftRegister = [1 1 0 1 0 0 0 0 1 0 1 a b c d]; for k = 0:length(dataIn) -1, feedback = xor( shiftRegister(13+(1)) , shiftRegister(14+(1)) ); dataOut(k+(1)) = mod(dataIn(k+(1))+feedback , 2); shiftRegister = [feedback shiftRegister([0:13]+(1))]; end; return; Submissio n Slide 22 Various Authors, TG3c Proposal The FCS & HCS November 12, 2006 doc.: IEEE 802.15-0760-03-003c X g0 g1 r0 g2 gM-2 r1 gM-1 rM-2 matlab code (indexing from 1 rather than 0) r = ones(1,M); for k = 1:K, f = mod(d(k) + r(M),2); r = mod([0 r(1:M-1)] + f*g(1:M),2) end; r = xor(r(M:-1:1),1) Y rM-1 Message block Input: m0, m1, , mK-1 First to enter encoder Last out from encoder X Y X Y Encoding Operation CRC: rM-1, rM-2, r0 Step 1. Reset Shift Register (SR) to all ones. Step 2. The 3 switches are placed in position X and the K bits are fed into the encoder. Step 3. After the last bit (m0) has been fed into the Shift Register (SR), the switches are moved to position Y. At this point the SR contains the CRC bits. These bits are then shifted out of the SR and complemented. CRC MAC frame payload FCS generator polynomial (M = 32): g(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1 = [111011011011100010000011001000001] PLCP Header HCS generator polynomial (M=16): g(x) = x16 + x12 + x5 + 1 = [10000100000010001] MAC payload or PLCP Header message polynomial: m(x) = m0 + m1 x + ... + mK-1xK-1 With (mK-1 = lsb of first octet of MAC payload or PLCP Header)

Submissio n Slide 23 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c The Reed Solomon FEC over GF(28) RS(K+16,K) & RS(K+8,K) X g0 g1 r0 RS(K+16,K) RS(K+8,K) g2 r1 g3 r2 : N = 255, T = 16 : N = 255, T = 8 Y gT-1 r3 rT-2 rT-1 Message block Input: m0, m1, m2, , mN-T-1 X X Y Y First to enter encoder Last out from encoder Code Word Output: mN-T-1, , m2 , m1 , m0, rT-1, , r0 Example Data data parity parity parity code Submissio n matlab code (255,239) = round(rand(8,239)) = (2.^[0:7])*data = rsenc(gf(data,8),255,239); = parity(:,end-15:end); = reshape(de2bi(parity,8)',1,128); = [data parity]; Slide 24 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c FEC Option I: RQ-LDPC No interleaving is required Supports rates , , and 7/8 Very low complexity systematic encoder Low complexity highly parallelizable decoder (gate count ~ 105Kgates) Throughput matched to that of RS 1 RS and 1 LDPC Decoder engine is needed for LDR devices Throughput of ~ 6 Gbps with Master clock of 324 MHz (BW/8) and 32 iterations Rate 1/2 3/4 7/8 KK 336 504

588 NN 672 672 672 dmin 14 10 6 Submissio n Slide 25 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c FEC Option I: RQ-LDPC 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 1 2 4 2 5 10 2 9 5 5 10 8 3 11 15 8 6 17 4 10 2 13 10 5 5 5 2 4 2 5 10 7 6 9 5 5 10 8 16 2 7 11 15 8 6 17 6 7 8 10 2 13 10 5 0 8 9 2 4 2 5 10 7 10 9 5 5 10 8 16 11 11 15 8 6 17 6 12 10 2 13 10 5 0 13 2 4 2 5 10 7 5 12 14 9 5 5 10 8 16 2 16 15 11 15 8 6 17 6 7 10 8 16 16 10 2 13 10 5 0 Submissio n Slide 26 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c FEC Option I: RQ-LDPC Parity check matrix H is specified by an exponent matrix E, i.e. H = JE Matrix J is the cyclic shift of the 21x21 Identity matrix, i.e. J = 0; J0 = I; J21 = I J 2121 0 0 0 1 1 0 0 1 0 0 0 0

0 0 1 0 E78: Rate 7/8 1 2 3 4 1 2 3 4 5 6 7 8 9 2 11 9 10 4 15 2 5 12 10 2 11 9 5 4 15 2 10 9 10 2 11 2 5 4 15 16 11 9 10 2 15 2 5 4 16 10 16 12 10 16 11 16 16 12 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 10 5 13 2 8 10 5 10 6 5 17 10 8 6 7 16 0 2 16 8 5 13 2 6 10 5 10 8 5 17 10 0 6 7 16 7 2 16 2 8 5 13 10 6 10 5 10 8 5 17 16 0 6 7 8 7 2 12 13 2 8 5 5 10 6 10 17 10 8 5 7 16 0 6 5 8 7 2 E34: Rate 3/4 1 2 3 4 5 6 7 8 1 2 2 3 9 4 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 12 16 5 2 10 5 10 8 7 16 10 13 8 10 6 5 17 6 11 10 15 2 12 16 5 2 10 5 8 10 7 16 2 2 9 5 4 10 11 15 2 10 16 8 13 6 10 5 17 0 6 7 9 2 5 4 16 12 2 5 10 5 10 8 16 7 10 11 2 15 10 16 8 13 10 6 5 17 0 6 9 2 5 4 16 12 2 5 5 10 10 8 7 16 5 2 11 10 15 2 16 10 13 8 10 6 17 5 0 6 8 7 Submissio n 5 4 6 7 8 5 Slide 27 Various Authors, TG3c Proposal November 12, 2006

doc.: IEEE 802.15-0760-03-003c FEC Option II: RQ-Convolutional 8 parallel encoders MSB Convolutional Encoder RS Encoder Outer Interleaver Demux 1:4 MUX 8:1 LSB RS Encoder Outer Interleaver Demux 1:4 Bit Interleaver Convolutional Encoder Convolutional Encoder Inner convolutional codes combined with outer Reed Solomon codes Outer-interleaver in-between : 4x224 bytes block interleaver Outer code rate : RS(224, 216) Submissio n Slide 28 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c FEC Option II: RS-Convolutional Convolutional Encoder & Puncturer Convolutional encoder : R = 1/3, K = 7 Generator polynomial : g0=1338, g1=1718, g2=1658 x Uncoded Data in Submissio n Z-1 Z-1 Z-1 Z-1 Z-1 Code rate Puncturing pattern Transmitted sequence 1/3 X:1 Y:1 Z:1 X1Y1Z1 1/2 X:1 Y:1 Z:0 X1Y1 4/7 X:1 1 1 1 Y:1 0 1 1 Z:0 0 0 0 X1Y1X2X3Y3X4Y4 2/3

X:1 1 Y:1 0 Z:0 0 X1Y1X2 4/5 X:1 1 1 1 Y:1 0 0 0 Z:0 0 0 0 X1Y1X2X3X4 Coded Data out Z-1 y Coded Data out z Coded Data out Slide 29 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c FEC Option II: RS-Convolutional Data multiplexer combines data from all convolutional encoders cc A cc B cc C cc D cc E cc F cc G cc H MUX bit interleaver EEP Mux/interleaver Bit interleaver size: 48 A1A6 come from encoder A, and similarly for BCDEFGH Submissio n A1 E5 D3 C1 G5 F3 E1 A5 H3 G1 C5 B3 I MSB B2 F6 E4 D2 H6 G4 F2 B6 A4 H2 D6 C4 I LSB C3 B1

F5 E3 D1 H5 G3 F1 B5 A3 H1 D5 Q MSB D4 C2 G6 F4 E2 A6 H4 G2 C6 B4 A2 E6 Q LSB Slide 30 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c FEC Option II: RS-Convolutional UEP-Mapping Mux/Interleaver Overall bit interleaver size 48 Submissio n A1 C3 A5 B1 D3 B5 C1 A3 C5 D1 B3 D5 B2 D4 B6 C2 A4 C6 D2 B4 D6 A2 C4 A6 E1 G3 E5 F1

H3 F5 G1 E3 G5 H1 F3 G5 F2 H4 F6 G2 E4 G6 H2 F4 H6 E2 G4 E6 Slide 31 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c FEC Option II: RS-Convolutional UEP-Coding Mux/Interleaver Overall bit interleaver size 96 For first half cycle of 48 bits: A1A7 come from encoder A, similarly for BCD; E1E5 come from encoder E, similarly for FGH A1 E1 C7 B6 G3 E5 D4 A5 H2 F4 C3 B2 I MSB B1 F3 D7 C6 H5 G2 E4 B5 A4 H1 D3 C2 I LSB C1 A7 F2 D6 C5 H4

G1 E3 B4 A3 G5 D2 Q MSB D1 B7 G4 F1 D5 A6 H3 F5 C4 B3 A2 E2 Q LSB For second half cycle of 48 bits: A1A7 come from encoder A, similarly for BCD; E1E5 come from encoder E, similarly for FGH Submissio n B1 F1 D7 C6 H3 F5 A4 B5 E2 G4 D3 C2 C1 G3 A7 D6 E5 H2 F4 C5 B4 E1 A3 D2 D1 B7 G2 A6 D5 E4 H1 F3 C4 B3 H5 A2

A1 C7 H4 G1 A5 B6 E3 G5 D4 C3 B2 F2 Slide 32 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Binary Interleaving Optimized binary interleaver based on an iterative structure [1-4] Effectively maximizes both intra- and inter- symbols interleaving spreading Efficiently improves decoder performance ( j) I p,q (k ) k I I p( 0,q) k k q p k p k K K I p( ,jq) k k q p k p I p( ,jq 1) Submissio n I p ,q (k ) (k ) I I X OUT k X IN I p( ,jq) k I p ,q (2) K K Slide 33 I K : Block size, p, q, j : Interleaver parameters K : Offset parameter p Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Iterative Block Interleaving Initial block of K coded bits I p ,q (k ) Successive iterations I p , q (2) (k ) k I Submissio n I I Slide 34 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c

The Constellation Mapper Qk 10 QPSK encoding table Input Bit b2k I-out Ik Input Bit b2k+1 Q-out Qk 0 -1 0 -1 1 +1 1 +1 b2kb2k+1 +1 -1 +1 00 I k jQk 1 2 11 -1 Ik 01 2b2k 1 1 j 2b2k 1, k 0, 1, 2, ... Qk b4kb4k+1b4k+2b4k+3 16-QAM mapping 00 10 Input Bit b4k b4k+1 I-out Ik Input Bit b4k+2 b4k+3 Q-out Qk 00 -3 00 -3 01 -1 01 -1 11 +1 11 +1 10 +3 10 +3 11 10 10 10 11 11 10 11

+1 +3 11 01 10 01 11 00 10 00 +3 00 11 01 11 -3 -1 00 01 01 01 +1 Ik -1 00 00 01 00 -3 I k jQk Submissio n 01 10 1 10 2b Slide 35 4k 1 2b4k 1 1 j 2b4k 2 1 2b4k 3 1 , k 0, 1, 2, ... Various Authors, TG3c Proposal November 12, 2006 64-QAM mapping Input Bit b6k b6k+1 b6k+2 I-out Ik 000 -7 001 -5 011 -3 010 -1 110 +1 111 +3 101 +5 100 +7 doc.: IEEE 802.15-0760-03-003c The Constellation Mapper Qk 000 100 001 100 011 100 b6kb6k+1b6k+2b6k+3b6k+4b6k+5

010 100 110 100 111 100 101 100 100 100 110 101 111 101 101 101 100 101 110 111 111 111 101 111 100 111 110 110 111 110 101 110 100 110 +7 000 101 001 101 011 101 010 101 +5 000 111 001 111 011 111 010 111 +3 000 110 001 110 011 110 010 110 -7 -5 -3 -1 000 010 001 010 011 010 010 010 +1 +1 +3 +5 +7 110 010 111 010 101 010 100 010 110 011 111 011 101 011 100 011 110 001 111 001 101 001 100 001 110 000 111 000 101 000 100 000

Ik -1 Input Bit b6k+3 b6k+4 b6k+5 Q-out Qk 000 -7 001 -5 011 -3 010 -1 110 +1 111 +3 101 +5 100 +7 Submissio n 000 011 001 011 011 011 010 011 -3 000 001 001 001 011 001 010 001 -5 000 000 001 000 011 000 010 000 -7 dk 1 42 2b 6k 1 4b6 k 2 2b6k 1 1 j 2b6k 3 1 4b6k 5 2b6 k 4 1 , Slide 36 k 0, 1, 2, ... Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Skewed Constellation for UEP-Mapping b0 b1 LSB = b1 00 10 d2 d1 QPSK 01 11

MSB = b0 LSB = b1,b3 b0 b1 b2 b3 0110 1110 1100 0111 1111 1101 2d2 0100 d2 0101 MSB = b0, b2 0001 0011 d1 16-QAM 0000 Submissio n 0010 Slide 37 1001 1011 2d1 1010 1000 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c The Tone Interleaver Normal FFT requires a bit-reversal operation before butterflying Bit-reversal interleaving pattern can be combined with FFT operation to reduce complexity Interleaving Rule : Before Interleaving Submissio n After Interleaving 0 000 000 0 1 001 100 4 2 010 010 2 3 011 110 6 4 100 001 1 5 101 101 5 6 110

011 3 7 111 111 7 Slide 38 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c The OFDM Modulator IFFT Inputs & Outputs 0 1 2 3 0 1 2 3 Null Null #2 #3 185 186 Guard Free 326 327 Free #-177 IFFT 326 327 334 335 334 335 #-3 #-2 NULL sk 185 186 s510 s511 Nu / 2 1 NFFT Y n m e j 2mk N FFT k 0 : 511 m Nu / 2 Ym n : frequency domain inputs with m 184 : 184 sk n : time domain outputs Description # location Zero subcarriers 3 -1,0,1 141 [-186:-256]U[186:255] Pilot subcarriers 16 [-166:22:-12]U[12:22:166] User defined subcarriers

16 [-185:-178]U[178:185] 336 [-177:-2]U[2:177] [-166:22:-12]U[12:22:166] Guard subcarriers 509 510 511 509 510 511 s0 s1 CP Default value is 64, Optional: 32, 96, & 128 n 177 178 177 178 Reserved Guard Time Domain Outputs Frequency Domain Inputs #177 Reserved s512-CP s511 Data subcarriers Subcarrier frequency allocation: 16 groups, 22 subcarriers per group (21 data & 1 pilot) Various Authors, TG3c Proposal +177 +167 +166 +165 +157 +156 +145 +144 +143 +134 +133 +123 +122 +121 +112 +111 +101 +100 +99 +90 +89 +79 +78 +77 +68 +67 +57 +56 +55 +46 +45 +35 +34 +33 Slide 39 +24 +23 +13 +12 +11 +2 +1 0 -1 -2 -11 -12 -13

-23 -24 -34 -35 -36 -45 -46 -55 -56 -57 -67 -68 -77 -78 -79 -89 -90 -99 -100 -101 -111 -112 -121 -122 -123 -133 -134 -143 -144 -145 -155 -156 -165 -166 -167 -177 Submissio n November 12, 2006 doc.: IEEE 802.15-0760-03-003c Optional Beamforming I Submissio n Slide 40 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Beamforming Requirements A unified messaging protocol that supports : 1. Different antenna configurations on either side (Tx or Rx): Omni or quasi-omni antennas Directional single antenna Switch diversity antennas Sectored antennas Beamforming antennas Etc, 2. Both pro-active and on-demand beamforming 3. Different usage models Per packet beamforming from PNC to multiple DEVs and DEVs to PNC PNC to one DEV DEV-DEV Others, The unified messaging protocol should be independent of the specifics of the beamforming algorithm and antenna configuration implementation. Therefore, the actual beamforming algorithm will be left to the implementer. However, the tools enabling the beamforming should be defined. These tools should support all scenarios while enabling: 1. Reduced latency 2. Reduced overhead 3. Fast beamforming Submissio n Slide 41 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Beamforming tools Type Preamble Length (# 512 symbols)

Header Rate (Mbps) Data Rate (Mbps) I 9 58 43 II 7 117 43 III 5 467 171 IV 3 933 342 Four type of packets can be used during beamforming; These packets are SC packets based on the CM (common mode) and therefore can be decoded by all DEVs; Most packets have no body. i.e. preamble only; Usage example: Quasi-Omni transmission with 0~3dB antenna gain: uses type I Directional transmission with 3~6dB antenna gain: uses type II Directional transmission with 6~9dB antenna gain: uses type III Directional transmission with 9~12 dB antenna gain: uses type IV Submissio n Slide 42 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Pro-Active Beamforming MIFS Q-Omni Beacon #1 Beacon Period for Superframe # m Q-Omni Beacon #2 Q-Omni Beacon #L Directional Beacon #(m-1)N+1 SIFS or MIFS Directional Beacon #(m-1) N+2 Directional Beacon #mN Superframe # m Beacon Period CAP (Contention Access Period) CTAP (Channel Time Allocation Period) COMPA Requested to Add optional Directional-CAPs as well to align with their beamforning Q-CAP #1 Q-CAP #2 Q-CAP

#L Packet To User #1 Direction #j1 Packet To User #2 Direction #j2 Packet To User #L Direction #jL SIFS or MIFS Pro-active beamforming is useful when the PNC is the source of data to one or multiple DEVs. Usage model example: Kiosk, STB, Laptop: The PNC is the source of data to multiple DEVs; The PNC can send each packet in a different direction, optimized to the destined device. Submissio n Slide 43 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Pro-Active Beamforming Beacon Period for Superframe # 1 Q-Omni Beacon #1 Q-Omni Beacon #2 Q-Omni Beacon #L Directional Beacon #1 Directional Beacon #2 Directional Beacon #N Directional Beacon #N+2 Directional Beacon #2N Directional Beacon #(M-1)N+2 Directional Beacon #MN Beacon Period for Superframe # 2 Q-Omni Beacon #1 Q-Omni Beacon #2 Q-Omni Beacon #L Directional Beacon #N+1 Beacon Period for Superframe # M Q-Omni Beacon #1 Q-Omni Beacon #2 Q-Omni Beacon #L Directional Beacon

#(M-1)N+1 The first L transmissions in each superframe use Quasi-Omni (Q-Omni) beacons that together provide a Quasi-omni pattern; For a PNC capable of a Quasi-omni coverage, L = 1; For a PNC with sectored antennas, L would be the number of sectors; For a PNC with switching transmit diversity antennas, L would be the number of transmit antennas; It is assumed that the PNC can beamform in J = NM directions; A direction does not necessarily mean a single beam; it can be any number of beams. The directional beacons are distributed over M superframes with N directional beacons per superframe; The structure is periodic of period M superframes; The CAP is divided into L sub-CAP periods corresponding to the L Q-omni beacons. During the lth Q-CAP, the PNC antenna is in the same direction it used to transmit the lth Q-Omni beacon. Submissio n Slide 44 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Pro-Active Beamforming The first L beacons may be of any packet type. For example: Omni beacons shall use packet type I with long preamble; Q-Omni beacons using sectored antennas or antenna arrays with say 3-6dB gain may use type I or type II; Q-Omni beacons using sectored antennas or antenna arrays with say 6-9dB gain may use type I, type II, or type-III; When used, the packet type shall be indicated in the SFD. Upon SFD detection, DEV knows the header and data rates and can decode the packet; Each Q-Omni shall carry the beamforming IE (Information element); indicated in the next slide; in addition to the default information required by 802.13b; The new information element would inform all devices listening to the PNC about the exact structure of the beamforming beacons; After a DEV decodes any one of the Q-omni beacons during any superframe, it is capable of understanding the entire beamforming cycle; Each directional beacon consists of a preamble only, i.e. it contains no header or data body; Submissio n Slide 45 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Pro-Active Beamforming Piconet synchronization parameters field format: 21+3n octets Octets:8 1 1 1 3 3 3 3 6 PNC address PNC response Piconet Mode MAX TX Power Level Duration per Q-CAP Number of Q-CAP Periods CAP end time Superframe duration Time token Beamforming Information Element Element ID hex value

Element Subclause Present in beacon 0x14 Beamforming Information Add as 7.4.22 In every beacon Beamforming Information Element Format 1 1 1 1 DIRECTIONAL PACKET TYPE CURRENT DIRECTIONAL BEACON IDENTIFIER NUMBER OF SUPERFRAMES PER BEAMFORMING CYCLE NUMBER OF DIRECTIONAL BEACONS PER SUPERFRAME 1 CURRENT Q-OMIN BEACON IDENTIFER (4bits) NUMBER OF Q-OMNI BEACONS (4bits) 1 1 Length (=5) Element ID Directional Beacon PLCP Preamble Type I, II or III Submissio n Slide 46 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Pro-Active Beamforming Examples O-DEV (Omni DEV), fast way: An O-DEV may chose to listen to the Q-omni beacons of only one superframe; Upon detection of the Q-omni beacons, the O-DEV stores a Link-Quality Factor (LQF) for each of the Q-omni beacons, than it sorts these L LQFs [LQF(1), , LQF(L)] and identify the best PNC direction l corresponding to the highest LQF; l = arg{max[LQF(i)]} i=1:L DEV associates with the PNC during the lth CAP of the current superframe, and informs the PNC that all further communications should happen with the PNC using its lth Q-omni direction; DEV can still choose to track the set of Ls best directions by monitoring the corresponding Qomni beacons every Q superframes. If a direction, say the rth Q-omni direction, is found with a better LQF, DEV can choose to inform the PNC to transmit the next packet using the rth Q-omni direction by encoding it in the NEXT DIRECTION filed in the PHY header. Q-DEV (Single Directional Antenna): An SD-DEV may choose to listen to the entire cycle of M superframes; If a DEV starts listening during the mth superframe, than upon detection of one of the Q-Omni beacons, it will learn that this is the mth superframe, and will listen to superframes number: m, m+1, , m+M-1; During this cycle of M superframes, SD-DEV can measure, store, and sort J LQFs corresponding to the J directional PNC directions. During the same cycle, it measures the L LQFs corresponding to the L Q-omni PNC directions. Denote by j the best directional direction and by l the best Q-omni direction. DEV associates with the PNC during the lth CAP of the (m+M-1)th superframe, and informs the PNC that all further communications should happen with the PNC using its jth directional direction; DEV can still choose to track the set of Js best directions by monitoring the corresponding directional beacons every QM superframes. If a direction, say the rth directional direction, is found with a better LQF, DEV can choose to inform the PNC to transmit the next packet using the rth directional direction by encoding it in the NEXT DIRECTION filed in the PHY header. Submissio n Slide 47 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Pro-Active Beamforming Examples

D-DEV (Directional DEV) capable of transmitting/receiving in at least one Q-omni direction and I directional directions: D-DEV starts with its antenna in one of the Q-omni directions; If the D-DEV starts listening during the mth superframe, than upon detection of one, or the best, Q-Omni beacon (say Q-omni beacon number l) , it will learn that this is the mth superframe; DEV can choose to do one of the following options: Lazy approach: DEV listen to IJ superframes, J superframes for each of its I directions as follows: DEV sets its directional direction to number 1, than listens to M superframes number: m, m+1, , m+M-1 and store and sort the corresponding J LQFs, LQF(1,1)LQF(1,J) where the first index refers to the DEVs direction whereas the 2nd index refers to the PNCs direction; DEV sets its directional direction to number 2 and listen to the next superframes and store the J LQFs: LQF(2,1) ... LQF(2,J); DEV sets its directional direction to number I and listen to the next M superframes and store the J LQFs: LQF(2,1) ... LQF(2,J). DEV finds the best directional combination (i,j) referring to DEV using its ith directional direction and PNC using it jth directional direction. DEV associates to PNC during the lth Q-CAP period and informs the PNC of the best direction (or best Js combinations). Fast approach: DEV sets its directional direction to number 1, than listens to the N directional beacons during the current superframe. If a direction, say jth PNC directional direction, with adequate LQF is found than DEV will associate to the PNC during the lth Q-CAP period and informs the PNC to use its jth direction for data communication. DEV can still choose to scan for better directions. If one is found it can inform the PNC to switch to the new direction by encoding appropriately the field NEXT DIRECTION in the PHY header. If no adequate direction is found, than DEV switches to another direction, for example direction r, which is orthogonal to direction 1. and listen to the next superframe. If no adequate direction is found, DEV can switch to another direction and continue the search until an adequate direction is found. Submissio n Slide 48 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Pro-Active Beamforming: Lazy ADD Algorithm DEV starts on Direction i=1 and set m=0, and timer t=0 Optional: DEV sorts matrix LQF And keep the best Q directions in decreasing order (i1,j1), (i2,j2), (iQ,jQ) While t < Tmax, DEV looks for a Q-Omni BF Detection No: Device starts Successful? PNC or go to sleep Yes: Locked to Q-Omni #S DEV reads Beacon information. (DEV now knows L, J, N, M, SF timing and all timing parameters of all BFs) Knowing the timing of directional Beacons, DEV listens and detect directional BFs on SF#m. Device stores Link quality Factors: LQF(i,(m-1)N+1), , LQF(i,(m-1)N+N) m=M? NO Optional: DEV listens to another IM SFs And rescan these best Q directions For verification DEV switches to Direction 1, set y=0 Yes y=Y? DEV restarts Scan NO DEV transmits during Q-CAP listening period #l on SF #y & requests that all further communications are exchanged using direction j1 for PNC m=m+1 Device waits for an ACK from PNC YES i = i + 1 & before start of next SF, DEV switched to direction i NO Submissio n i=I? y=y+1 Successful ACK ? Device switches to Direction i1, and ADD is SUCCESSFUL YES Slide 49 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c On-Demand Beamforming On-demand beamforming is the beamforming of choice between two DEVs or between PNC and one DEV. Since the details are the same, we describe the case of the two DEVs;

On-demand beamforming will take place in the CTA allocated to the link between the TWO DEVs; When a DEV is talking to multiple DEVs, the same messaging protocol as the pro-active beamforming messaging protocol is used. In this case, the CTA will play the role of the beacon period during the beamforming phase, and will be used for data communication thereafter. For the case of two DEVs only, since the CTA is a direct link between them, it is possible to devise a more collaborative and interactive ondemand beamforming messaging protocol; Submissio n Slide 50 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c On-Demand Beamforming Q-omni phase: DEV1 starts its first transmission with L1 Q-omni packets followed by L1 corresponding Q-omni listening periods; DEV1 keeps repeating this section until DEV2 sends back a response Each Q-omni training packet would contain the Q-omni training packet IE; DEV2, capable of L2 Q-Omni directions, will set its reception direction to one of the L2 directions and listens to DEV1 first L1 transmissions and stores L1 LQFs. DEV2 moves to a new direction and listen to DEV1 second period of L1 transmissions. DEV2 continue to do so until an adequate LQF. Alternatively, DEV2 may choose to listen using all L2 directions than find the best LQF. At the end of this phase, DEV1 and DEV2 would know the best Q-Omni directions combination to exchange further data. Using the Q-omni training response packet IE, DEV2 would inform DEV1 of its Qomni capabilities, i.e. L2, as well as its own best 1st direction and 2nd direction that it will use for all messaging. Furthermore, DEV2 would inform DEV1 of the best 1 st and 2nd direction it found out from the L1 direction. DEV1 best Q-omni direction would be labeled l1, and DEV2 best Q-omni-direction would be labeled l2. DEV2 informs DEV1 of its directional capability as well. Submissio n Slide 51 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c On-Demand Beamforming Superframe Structure Beacon Period CTAP: Channel Time Allocation Period CAP (Contention Access Period) CTA 1 CTA 2 CTA k CTA n Q-omni training section Q-Omni Packet #1 Submissio n M I F S Q-Omni Packet #2 M I F S Q-Omni Packet #L S I F S Q-Omni Listening Period #1 M I F S Q-Omni Listening Period #2 M I F S Q-Omni Listening Period #L

S I F S S I F S Q-Omni Listening Period #L M I F S Q-Omni Listening Period #2 M I F S Q-Omni Listening Period #1 S I F S Q-Omni Packet #L M I F S Q-Omni Packet #2 M I F S Q-Omni Packet #1 S I F S Q-Omni Listening Period #L M I F S Q-Omni Listening Period #2 M I F S Q-Omni Listening Period #1 S I F S Q-Omni Packet #L M I F S Q-Omni Packet #2 M I F S Q-Omni Packet #1 Slide 52 Various Authors, TG3c Proposal November 12, 2006

doc.: IEEE 802.15-0760-03-003c On-Demand Beamforming Q-Omni Training Packet IE: DEV1DEV2 3 1 1 1 1 Q-OMIN LISTENING PERIOD DURATION NUMBER OF Q-OMIN LISTENING PERIODS CURRENT Q-OMIN PACKET IDENTIFIER Length (=5) Element ID Q-Omni Training Response Packet IE: DEV2DEV1 1 1 1 1 1 1 1 1 DEV2 DIRECTIONAL CAPABILITY DEV1 PREFERRED DIRECTION #2 DEV1 PREFERRED DIRECTION #1 DEV2 PREFERRED DIRECTION #2 DEV2 PREFERRED DIRECTION #1 DEV2 NUMBER OF Q-OMNI DIRECTIONS Length (=11) Element ID Submissio n Slide 53 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c On-Demand Beamforming Directional phase: DEV1 uses an R-cycle procedure to do the beamforming; The R cycles may happen within one CTA or may be distributed over M superframes; Each cycle is made from K sub-cycles, where N and K can change from one cycle to another. This will allow for different search algorithms such as random and binary search, and differentiating between acquisition and tracking; Each cycle is preceded by an Q-omni transmission outlining the structure of the current cycle; Each sub-cycle consists of N directional preambles followed by an Q-omni listening period; During data communication, DEV1 may still choose to transmit a sub-cycle every superframe to allow DEV2 to continuously track the beams. If DEV2 finds a better direction, it can inform DEV1 to transmit next packets using the new direction by encoding the field Antenna Direction in the header appropriately. Submissio n

Slide 54 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c On-Demand Beamforming Superframe Structure Beacon Period CTAP: Channel Time Allocation Period CAP (Contention Access Period) CTA 1 CTA 2 CTA k CTA n CTA k Sub-cycle Q-Omni Packet S I F S Q-Omni Listening Period S I F S Directional preamble #1 S I F S Q-Omni Listening Period S I F S Directional preamble #rN M I F S Directional preamble #2 M I F S M I F S Directional preamble #(r-1)N+2 Directional preamble #N M I F S S I F S S I F S Q-Omni Listening Period Directional preamble #2N S

I F S Directional preamble #(r-1)N+1 S I F S Directional preamble #N+2 Q-Omni Listening Period S I F S M I F S Directional preamble #N+1 Q-Omni Packet Information Element 1 1 1 1 3 1 3 1 1 DIRECTIONAL PREAMBLE TYPE NUMBER OF SUPERFRAMES PER BEAMFORMING CYCLE NUMBER OF SUBCYCLES PER SUPERFRAME NUMBER OF DIRECTIONAL PREAMBLES PER SUB-CYCLE Q-OMIN LISTENING PERIOD DURATION CURRENT Q-OMIN PACKET IDENTIFIER CTA END TIME Length (=11) Element ID Beamforming Report Information Element Submissio n 1 1 1 1 1 LQF-N LQF-2 LQF-1 Length (=N) Element ID Slide 55

Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Modified Golay Sequences Submissio n Slide 56 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Preamble Golay Sequences Delay and Seed Vectors for Golay sequences a1, a2, b3 & a4 D1 D2 D3 D4 W1 W2 W3 W4 64 64 64 64 -1 -1 -1 -1 32 32 32 32 -j -1 -1 -1 8 8 4 4 -1 1 -1 1 1 1 2 2 -j +j -1 -1 4 4 8 8 -1 1 1 1 2 2 1 1 1 -j +j -j 16 16 16 16 1 1 1 1 Preamble modified Golay sequences are generated from the four Golay sequences specified above. The 3rd sequence is of type b whereas the 1st, 2nd and 3rd are of type a; Each sequence is specified by a delay vector D and a seed vector W that together specify a pair of complementary Golay sequences of type a and b along the corresponding matched filter; These four sequences were optimized to have low sidelobe levels as well as lowcross correlation Submissio n Slide 57 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Modified Preamble Golay Sequences

n Re[u1(n)] Im [u1(n)] n Re[u1(n)] Im [u 1(n)] n Re[u1(n)] Im [u 1(n)] n Re[u 1(n)] Im [u 1(n)] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1.5786 -0.0056 0.0176 1.5856 1.5229 0.0464 0.0741 1.4136 1.6206 0.3466 -0.7945 -0.5293 0.5810 0.7336 -0.4190 -1.4368 -1.4461 -0.4749 0.7946 0.6674 -0.7713 -0.7147 0.8199 0.6092 -0.7377 -0.4025 -0.0367 -1.3977 -1.6585 -0.0464 0.0615 -1.6015 -0.7156 -0.6062 0.5514 0.5016 0.3865 0.5153 -0.3904 -0.8617 0.4105 1.5472 1.3044 0.4899 -0.4940 -1.3617 -1.3659 -0.5495 0.5656 1.3617 1.2943 0.6091 -0.5016 -1.5470 -1.2060 -0.2534 -0.4266 -0.4439 0.3635 0.4940 0.5056

0.5077 -0.5782 -0.6995 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 -1.6015 0.0615 -0.0464 -1.6585 -1.3952 -0.0365 -0.3952 -0.7562 0.6048 0.8684 -0.7438 -0.8468 0.7927 0.8044 -0.8033 -0.7753 0.7927 0.7328 -0.7438 -0.7112 0.6074 0.8237 -0.3879 -1.6295 -1.3992 -0.0182 -0.1074 -1.6094 -1.3435 -0.0973 -0.4676 -0.5724 0.6995 0.5782 -0.5077 -0.5056 -0.4940 -0.3661 0.4412 0.4190 0.2619 1.2312 1.5008 0.5056 -0.5016 -1.4461 -1.4101 -0.1300 -0.0997 -1.4190 -1.5083 -0.3865 0.4940 1.2557 1.5747 0.4119 -0.8460 -0.3997 0.4480 0.5016 0.4899 0.3088 -0.2599 -0.5581 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 0.5724 0.4676 0.0973 1.3435 1.6069 0.1072 0.0109 1.4177 1.6339 0.3393 -0.7946 -0.5319 0.5810 0.7336 -0.4190 -1.4368 -1.4461 -0.4749 0.7946 0.6674 -0.7688 -0.7145 0.8272 0.5959 -0.7418 -0.3393 -0.0975 -1.4817 -1.4216 -0.1265 -0.4264 -0.5583 -0.5581 -0.2599 0.3088 0.4899 0.5016 0.4505 -0.3970 -0.8385 0.4033 1.5495 1.3019 0.4899 -0.4940 -1.3617 -1.3659 -0.5495 0.5656 1.3617 1.2943 0.6091 -0.5016 -1.5495 -1.2037 -0.2605 -0.4033 -0.4505 0.2988 0.6091 0.4940 0.2601 -0.2375 -0.5570 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 0.5583 0.4264 0.1265

1.4216 1.4791 0.0973 0.3320 0.7602 -0.5915 -0.8757 0.7436 0.8443 -0.7927 -0.8044 0.8033 0.7753 -0.7927 -0.7328 0.7438 0.7112 -0.6048 -0.8235 0.3952 1.6161 1.3952 0.0814 0.0466 1.5255 1.5856 0.0176 -0.0056 1.5786 -0.5570 -0.2375 0.2601 0.4940 0.6091 0.3013 -0.4478 -0.3958 -0.2691 -1.2288 -1.5033 -0.5056 0.5016 1.4461 1.4101 0.1300 0.0997 1.4190 1.5083 0.3865 -0.4940 -1.2582 -1.5723 -0.4190 0.8692 0.3931 -0.5128 -0.3865 -0.5016 -0.5514 0.6062 0.7156 Submissio n Slide 58 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Modified Preamble Golay Sequences n Re[u2(n)] Im [u2(n)] n Re[u2(n)] Im [u2(n)] n Re[u2(n)] Im [u2(n)] n Re[u2(n)] Im [u2(n)] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 -0.0157 -1.3413 -0.0907 1.1856 0.8570 0.6059 0.8142 0.8847 0.7982 0.5966 0.9126 1.1308 -0.1547 -1.1607 -0.0907 1.0000 0.9956 0.8122 0.0640 -0.9404 -0.9765 -0.6489 -0.7425 -0.8940 -0.8303 -0.6059 -0.8409 -1.1738 0.0352 1.4008 0.0636 -1.5488 -1.3491 -0.1305 1.2468 0.8490 0.4512 1.0401 0.9927 -0.1195 -0.7955 -0.9954 -1.0042 0.1305 1.1040 0.1305 -1.0068 -0.9956 -0.8003 -0.1034 1.0068 0.9685 0.4992 0.9687 1.0115 -0.1195 -0.8144 -0.9240 -1.0522 0.0109 1.3491 0.1038 -1.5359 -0.0157 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0.0157 1.5359 -0.1038 -1.3491 -0.0109 1.0497 0.9238

0.8096 0.1356 -1.0000 -1.0405 -0.4636 -0.8333 -1.2474 0.0907 1.4081 -0.0075 -1.4769 0.0640 1.3486 0.0266 -1.0621 -0.9242 -0.8169 -0.1195 1.0141 0.9689 0.5091 0.9528 1.0073 -0.0636 -0.8593 1.5488 -0.0636 -1.4008 -0.0352 1.1763 0.8411 0.6107 0.8142 0.8825 0.8142 0.6133 0.8413 1.1862 -0.0509 -1.4003 -0.0239 1.4898 -0.0239 -1.4003 -0.0509 1.1836 0.8411 0.6085 0.8303 0.8966 0.7427 0.6587 0.9608 0.9410 -0.0242 -0.8712 -1.0037 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 -1.0037 -0.8712 -0.0242 0.9410 0.9608 0.6613 0.7428 0.9014 0.8142 0.5919 0.9124 1.1283 -0.1547 -1.1607 -0.0907 1.0000 0.9956 0.8122 0.0640 -0.9404 -0.9765 -0.6514 -0.7427 -0.8988 -0.8142 -0.5944 -0.9126

-1.1381 0.1704 1.1602 0.0509 -0.9410 -0.8593 -0.0636 1.0073 0.9528 0.5065 0.9687 1.0093 -0.1034 -0.8003 -0.9956 -1.0068 0.1305 1.1040 0.1305 -1.0068 -0.9956 -0.8003 -0.1034 1.0068 0.9685 0.4966 0.9685 1.0068 -0.1034 -0.8029 -0.9958 -1.0166 0.1462 1.1034 0.0907 -0.9478 -0.9874 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 -0.9874 -0.9478 0.0907 1.1034 0.1462 -1.0141 -0.9956 -0.7981 -0.1195 0.9952 1.0403 0.4610 0.8333 1.2474 -0.0907 -1.4081 0.0075 1.4769 -0.0640 -1.3486 -0.0266 1.0596 0.9240 0.8122 0.1356 -0.9975 -1.0403 -0.4537 -0.8490 -1.2468 0.1305 1.3491 -0.9410 0.0509 1.1602 0.1704 -1.1407 -0.9128 -0.5992 -0.7982 -0.8873 -0.8144 -0.6158 -0.8413 -1.1862 0.0509

1.4003 0.0239 -1.4898 0.0239 1.4003 0.0509 -1.1862 -0.8413 -0.6133 -0.8142 -0.8800 -0.8140 -0.6034 -0.8570 -1.1856 0.0907 1.3413 0.0157 Submissio n Slide 59 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Modified Preamble Golay Sequences n Re[u3(n)] Im [u3(n)] n Re[u3(n)] Im [u3(n)] n Re[u3(n)] Im [u3(n)] n Re[u3(n)] Im [u3(n)] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 -0.0157 -1.5359 0.1038 1.3491 0.0109 -1.0522 -0.9240 -0.8144 -0.1195 1.0115 0.9687 0.4992 0.9685 1.0068 -0.1034 -0.8003 -0.9956 -1.0068 0.1305 1.1040 0.1305 -1.0042 -0.9954 -0.7955 -0.1195 0.9927 1.0401 0.4512 0.8490 1.2468 -0.1305

-1.3491 1.5488 -0.0636 -1.4008 -0.0352 1.1738 0.8409 0.6059 0.8303 0.8940 0.7425 0.6489 0.9765 0.9404 -0.0640 -0.8122 -0.9956 -1.0000 0.0907 1.1607 0.1547 -1.1308 -0.9126 -0.5966 -0.7982 -0.8847 -0.8142 -0.6059 -0.8570 -1.1856 0.0907 1.3413 0.0157 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 0.0157 1.3413 0.0907 -1.1856 -0.8570 -0.6034 -0.8140 -0.8800 -0.8142 -0.6133 -0.8413 -1.1862 0.0509 1.4003 0.0239 -1.4898 0.0239 1.4003 0.0509 -1.1862 -0.8413 -0.6158 -0.8144 -0.8873 -0.7982 -0.5992 -0.9128 -1.1407 0.1704 1.1602 0.0509 -0.9410 -1.3491 -0.1305 1.2468 0.8490 0.4537 1.0403 0.9975 -0.1356 -0.8122 -0.9240 -1.0596 0.0266 1.3486 0.0640 -1.4769 -0.0075 1.4081 0.0907

-1.2474 -0.8333 -0.4610 -1.0403 -0.9952 0.1195 0.7981 0.9956 1.0141 -0.1462 -1.1034 -0.0907 0.9478 0.9874 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 -0.9874 -0.9478 0.0907 1.1034 0.1462 -1.0166 -0.9958 -0.8029 -0.1034 1.0068 0.9685 0.4966 0.9685 1.0068 -0.1034 -0.8003 -0.9956 -1.0068 0.1305 1.1040 0.1305 -1.0068 -0.9956 -0.8003 -0.1034 1.0093 0.9687 0.5065 0.9528 1.0073 -0.0636 -0.8593 0.9410 -0.0509 -1.1602 -0.1704 1.1381 0.9126 0.5944 0.8142 0.8988 0.7427 0.6514 0.9765 0.9404 -0.0640 -0.8122 -0.9956 -1.0000 0.0907 1.1607 0.1547 -1.1283 -0.9124 -0.5919 -0.8142 -0.9014 -0.7428 -0.6613 -0.9608 -0.9410 0.0242 0.8712 1.0037 96 97 98 99 100

101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 -1.0037 -0.8712 -0.0242 0.9410 0.9608 0.6587 0.7427 0.8966 0.8303 0.6085 0.8411 1.1836 -0.0509 -1.4003 -0.0239 1.4898 -0.0239 -1.4003 -0.0509 1.1862 0.8413 0.6133 0.8142 0.8825 0.8142 0.6107 0.8411 1.1763 -0.0352 -1.4008 -0.0636 1.5488 0.8593 0.0636 -1.0073 -0.9528 -0.5091 -0.9689 -1.0141 0.1195 0.8169 0.9242 1.0621 -0.0266 -1.3486 -0.0640 1.4769 0.0075 -1.4081 -0.0907 1.2474 0.8333 0.4636 1.0405 1.0000 -0.1356 -0.8096 -0.9238 -1.0497 0.0109 1.3491 0.1038 -1.5359 -0.0157 Submissio n Slide 60 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Modified Preamble Golay Sequences n Re[u 4(n)] Im [u4(n)] n Re[u4(n)] Im [u4(n)] n

Re[u 4(n)] Im [u 4(n)] n Re[u4(n)] Im [u 4(n)] 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 1.1801 0.8372 1.0140 -0.0198 -1.3268 0.0038 1.3171 0.0339 -1.0029 -0.9426 -0.9458 0.0762 1.1158 0.1465 -1.0068 -1.0116 -0.8122 -0.0479 0.9472 0.9206 0.6951 0.8210 0.7127 0.8523 1.0088 0.0341 -1.0544 -0.8899 -0.5712 -0.9323 -0.9039 -0.2484 0.4364 0.9899 0.8482 0.5412 0.9199 1.1360 -0.1204 -1.2016 -0.1514 1.1927 0.8876 0.4530 1.0244 1.0000 -0.1195 -0.8003 -0.9795 -1.0000 0.0746 1.1489 0.2115 -1.1890 -0.9556 -0.4050 -0.9535 -1.1696 0.1583 1.1800 0.1641 -1.1762 -0.9895 -0.2444 32 33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 -0.2484 -0.9039 -0.9323 -0.5712 -0.8899 -1.0519 0.0343 1.0136 0.8362 0.7012 0.8928 0.6595 0.7854 1.1878 -0.0352 -1.4149 -0.0082 1.4915 -0.0797 -1.3553 0.0301 1.0014 0.8811 1.0038 -0.0198 -1.2823 -0.0678 1.3322 0.1695 -1.2402 -0.9598 -0.2307 0.2444 0.9895 1.1762 -0.1641 -1.1825 -0.1585 1.1648 0.9696 0.4216 0.8842 1.2444 -0.1076 -1.3935 -0.0082 1.4752 -0.0082 -1.3935 -0.1064 1.2457 0.8892 0.4174 0.9619 1.1813 -0.1576 -1.2125 -0.1171 1.1785 0.8657 0.5170 0.9748 0.9072 0.2426 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

93 94 95 0.2307 0.9598 1.2402 -0.1695 -1.3347 0.0676 1.2775 0.0359 -0.9872 -0.9525 -0.9460 0.0737 1.1158 0.1465 -1.0068 -1.0116 -0.8122 -0.0479 0.9472 0.9206 0.6951 0.8236 0.7129 0.8622 0.9931 0.0372 -1.0144 -0.9441 -0.5955 -0.8107 -0.9870 -0.4620 0.2426 0.9072 0.9748 0.5170 0.8657 1.1759 -0.1173 -1.2173 -0.1415 1.1929 0.8902 0.4530 1.0244 1.0000 -0.1195 -0.8003 -0.9795 -1.0000 0.0746 1.1489 0.2089 -1.1892 -0.9654 -0.3893 -0.9515 -1.2092 0.2221 1.1720 0.0093 -0.9504 -0.8867 -1.1624 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 0.4620 0.9870 0.8107 0.5955 0.9441 1.0119 -0.0374 -0.9979 -0.8461 -0.7014 -0.8953 -0.6595 -0.7854 -1.1878 0.0352 1.4149

0.0082 -1.4915 0.0797 1.3553 -0.0276 -1.0012 -0.8712 -1.0195 0.0178 1.3219 0.0040 -1.3243 -0.0198 1.0140 0.8372 1.1801 -1.1624 -0.8867 -0.9504 0.0093 1.1746 0.2223 -1.2044 -0.9676 -0.4059 -0.8940 -1.2445 0.1051 1.3935 0.0082 -1.4752 0.0082 1.3935 0.1064 -1.2457 -0.8892 -0.4174 -0.9594 -1.1811 0.1675 1.1968 0.1202 -1.1385 -0.9199 -0.5412 -0.8482 -0.9899 -0.4364 Submissio n Slide 61 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Optional Beamforming II Submissio n Slide 62 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Antenna Configuration Two major antenna configurations identified Phased antenna array: beams can be formed with most versatility to almost arbitrary directions Switched antenna: beams can be formed toward only a finite number of pre-defined directions Single antenna can be viewed as a special case of the switched antenna Antenna training protocol should support different antenna configurations Submissio n Slide 63 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Number of Antenna Elements In both cases of phased antenna array (PAA) and switched antenna array (SAA), number of antenna elements in the array can not be pre-fixed Standard simply does not specify how many antenna elements a device should implement Number of antenna elements thus should be exchanged over the air inside the training process Submissio n Slide 64 Various Authors, TG3c Proposal November 12, 2006

doc.: IEEE 802.15-0760-03-003c Antenna Info Exchange Antenna info (antenna type and number of antennas) are exchanged in the association stage Example: Octets: 1 1 2 2 IE index Length SC mode support OFDM mode support 1 3 Explicit / implicit Antenna Support Bits: 8 8 4 4 Number of TX elements Number of RX elements TX antenna type RX antenna type Submissio n Slide 65 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Possible Combinations Depending on the antenna types of STA1, and STA2; 4 possible combinations 1) PAA to PAA 2) PAA to SAA 3) SAA to PAA 4) SAA to SAA Apply optimized training sequence for each combination Submissio n Slide 66 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Channelization Desired Features Use free spectrums of Japan, USA, Korea & EU Support for 4 channels in the available spectrum Channel Separation in the order of 2 GHz Single/Dual integer PLL that generates all necessary frequencies using direct synthesis Support of multiple PLL architectures (Direct conversion, double conversion) High Frequency Dividers should be in power of 2 : low-frequency dividers can be programmable Support of multiple crystals including at least one cell crystal &

one high frequency crystal Submissio n Slide 67 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Channelization Submissio n Slide 68 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Channelization Channel Number Low Freq. (GHz) Center Freq. (GHz) High Freq. (GHz) 3 dB BW (MHz) Roll-Off Factor 1 57.240 58.320 59.400 1728 0.25 2 59.400 60.480 61.560 1728 0.25 3 61.560 62.640 63.720 1728 0.25 4 63.720 64.800 65.880 1728 0.25 2160 MHz 1728 MHz 240 MHz 2 1 57 120 MHz 1296 MHz 58 59 60

4 3 61 62 63 64 65 66 fGHz Support Cell phone XTAL: 15 MHz, 18 MHz, 19.2 MHz & 24 MHz & Other High frequency XTALs: 22.5, 27, 30, 33.75, 36, 45, 54MHz, Balanced margins to 57/66 GHz & Good roll-off factor Supports Multiple PLL Architectures even with the Cell phone XTAL Dual PLL: High frequency PLL that generates carrier frequencies Low frequency PLL that generates the ADC/DAC & ASIC frequencies Submissio n Slide 69 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Direct Conversion PLL Reference Diagram Oscillator XTAL ADC/DAC 1728 2592 3456 fc (GHz) 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 Submissio n R1 Phase Detector LPF R2 VCO fc P M options: MHz MHz MHz fX (MHz) 15 15 15 15 18 18 18 18 22.5 22.5 22.5 22.5 27 27 27 27 fX Phase Detector fM N LPF fQ

fN Q Example: fADC = 3456 MHz VCO 128x3 128 512 64x3 fQ(GHz) 3.645 3.780 3.915 4.050 7.290 7.560 7.830 8.100 1.82250 1.89000 1.95750 2.02500 3.645 3.780 3.915 4.050 fN (MHz) 1215 1260 1305 1350 2430 2520 2610 2700 607.50 630.00 652.50 675.00 729 756 783 810 fM (MHz) 405 420 435 450 486 504 522 540 607.50 630.00 652.50 675.00 729 756 783 810 R1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Slide 70 P 16 16 16 16 8 8 8 8 32 32 32 32 16 16 16 16 Q 3 3 3 3 3 3 3 3 3 3 3 3 5 5

5 5 N 3 3 3 3 5 5 5 5 1 1 1 1 1 1 1 1 M 33 3 22 7 29 23 5 333 227 29 235 333 227 29 235 333 227 29 235 R2 5 5 5 5 1 1 1 1 5 5 5 5 1 1 1 1 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Heterodyne PLL Reference Diagram: Variable IF Oscillator XTAL ADC/DAC 1728 2592 3456 fX options: MHz MHz MHz R1 Phase Detector LPF P fS 2/4 M R2 VCO Phase Detector fM LPF N fN Q fRF-Mixer I Q fIF-Mixer %4 fIF ~ 6-7 GHz %2 fIF ~ 11-13 GHz P = 1 fIF ~ 19-21 GHz

Example: fADC = 3456 MHz VCO 64x9 16x3x3 128 4x3x3x5 fc (GHz) 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 fX(MHz) 15 15 15 15 18 18 18 18 22.5 22.5 22.5 22.5 27 27 27 27 Submissio n fs (GHz) 25.920 26.880 27.840 28.800 23.328 24.192 25.056 25.920 38.880 40.320 41.760 43.200 23.328 24.192 25.056 25.920 fIF (GHz) 6.480 6.720 6.960 7.200 11.664 12.096 12.528 12.960 19.440 20.160 20.880 21.600 11.664 12.096 12.528 12.960 fN (MHz) 405 420 435 450 1458 1512 1566 1620 607.50 630.00 652.50 675.00 729 756 783 810 fM(MHz) 405 420 435 450 486 504 522 540 607.50 630.00 652.50 675.00 729 756 783

810 Slide 71 R1 P Q N M R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 1 1 1 1 2 2 2 2 64 64 64 64 16 16 16 16 64 64 64 64 32 32 32 32 1 1 1 1 3 3 3 3 1 1 1 1 1 1 1 1 3x3x3 2x2x7 29 2x3x5 333 227 29 235 33 3 22 7 29 23 5 333 227 29 235 5 5 5 5 1 1 1 1 5 5 5 5 1 1 1 1 Various Authors, TG3c Proposal

November 12, 2006 doc.: IEEE 802.15-0760-03-003c Heterodyne PLL Reference Diagram: Fixed IF Oscillator XTAL fX R1 Phase Detector LPF fM M ADC/DAC 1728 2592 3456 options: MHz MHz MHz R2 Phase Detector fRF VCO fN N LPF VCO Q fIF fQ P fADC L 64x3 16x3x3 128 4x3x3x5 fc (GHz) 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 58.320 60.480 62.640 64.800 fX(MHz) 15 15 15 15 18 18 18 18 22.5 22.5 22.5 22.5 27 27 27 27 Submissio n fRF (GHz) 49.680 51.840 54.000 56.160 51.408 53.568 55.728 57.888 49.680 51.840 54.000 56.160 51.408

53.568 55.728 57.888 fIF (GHz) 8.640 8.640 8.640 8.640 6.912 6.912 6.912 6.912 8.640 8.640 8.640 8.640 6.912 6.912 6.912 6.912 fQ (MHz) 3105 3240 3375 3510 6426 6696 6966 7236 1552.50 1620.00 1687.50 1755.00 3213 3348 3483 3618 fN(MHz) 1035 1080 1125 1170 2142 2232 2322 2412 517.50 202.50 562.50 877.50 459 837 1161 1809 Slide 72 fM(MHz) 1035 1080 1125 1170 306 558 774 1206 517.50 67.50 112.50 292.50 459 837 1161 1809 R1 P Q N M L R2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 16 16 16 8 8 8 8 32 32

32 32 16 16 16 16 3 3 3 3 3 3 3 3 3 8 3 2 7 4 3 2 3 3 3 3 7 4 3 2 1 3 5 3 1 1 1 1 23 2x2x2x3 5x5 2x13 17 31 43 67 23 3 5 13 17 31 43 67 5 5 5 5 4 4 4 4 5 5 5 5 4 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Complementary Antenna Patterns Submissio n Slide 73 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Antennas Antennas can be for example:

Omni-directional antennas; Single-directional antennas; Sectored antennas capable of transmitting in L directions 1D (1 Dimensional) Antenna array capable of transmitting narrow-beams in J directions; 2D (2 Dimensional) Antenna array capable of transmitting narrow-beams in J directions; phased antenna arrays are a potential candidate for 60GHz. All antenna elements will have the same PA with transmit power = overall transmit power/number of antenna elements; The simplest phased antenna array is an antenna array implementing the following phases 0 o, 90o, 180o or 270o for each antenna element. Using a quadrature transmitter with I & Q (In-phase and Quadrature), this means each antenna element will transmit I (phase 0 o), -I (phase 180o), Q (phase 270o), Q (phase 90o). An equivalent set of signals would be: I+Q, I-Q, -I+Q, -I-Q. A phased antenna array cannot generate an omni pattern. However, it is possible to generate a Quasi-omni pattern, or a set of Q-omni complementary patterns that together provide an omni-coverage. Submissio n Slide 74 Various Authors, TG3c Proposal November 12, 2006 doc.: IEEE 802.15-0760-03-003c Complementary Patterns Example z y x Consider for example an 1D phased antenna array with 8 elements spaced by /2. The pattern [+1 +1 -1 -1 +1 -1 +1 -1] corresponding to the transmission of [+I +I I I +I I +I I] on the 8 elements is maximum at = 0o, has a HPBW of 98o and a maximum gain of 3dB. This pattern will be referred as Main Q-Omni pattern. The pattern [+1 +1 -1 -1 +1 -1 +1 -1] is maximum at = 90o , has a HPBW of 41o and a maximum gain of 3dB. This pattern will be referred as Complementary Q-Omni pattern. These 2 patterns are exactly complementary in the sense that the sum of their power gain is a constant = 2 (or 3dB) g1 , g2 , 2 Submissio n Slide 75 Various Authors, TG3c Proposal

Recently Viewed Presentations

  • Présentation PowerPoint - ANSWEB

    Présentation PowerPoint - ANSWEB

    Title: Présentation PowerPoint Document presentation format: Affichage à l'écran Other titles: Times New Roman Arial Wingdings 3 Wingdings-Regular Symbol TrebuchetMS 9_Modèle par défaut 10_Modèle par défaut Graphique Microsoft Excel Diapositive 1 Diapositive 2 Diapositive 3 Diapositive 4 Diapositive 5 Diapositive...
  • Blue Sky InitiativesPresented by: Robert Campbell, CIA, CRMA ...

    Blue Sky InitiativesPresented by: Robert Campbell, CIA, CRMA ...

    Management must monitor internal controls on an ongoing basis to ensure that any weaknesses or non-compliance are promptly identified and corrected. The Auditor-Controller's role is to assist management by performing periodic assessments . of the effectiveness of the department's internal...
  • Roof Component Parts - bcsc.k12.in.us

    Roof Component Parts - bcsc.k12.in.us

    Presentation 19: RAFTER AND ROOF COMPONENT PARTS Gable Roof Gable Roof Roof Framing Terms Roof Framing Terms Rafter Parts Ridge Cut Bird's Mouth and Tail Bird's Mouth and Tail Projection vs. Overhang Rafter Parts Rafter Parts Rafter Parts Conclusions Gable...
  • THE SALEM WITCHCRAFT TRIALS OF 1692 - C. W. Thayer

    THE SALEM WITCHCRAFT TRIALS OF 1692 - C. W. Thayer

    THE SALEM WITCHCRAFT TRIALS OF 1692 WITCHCRAFT HYSTERIA In 1692, the Massachusetts colony fell victim to the fear of witches. Over 170 people were arrested and accused of being witches. However, this was not an isolated incident. From 1500-1700, it...
  • HATE CRIMES: Investigative Review

    HATE CRIMES: Investigative Review

    STATEMENT ON HATE CRIMES. It is the strategy of the University Police Department to maximize efforts, ensuring all residents of the university community enjoy the right to live free of crime motivated by the victims race, ethnicity, gender, national origin,...
  • Software Cost Estimation - Acadia University

    Software Cost Estimation - Acadia University

    Software Cost Estimation Predicting the resources required for a software development process Topics covered Feasibility Analysis Productivity measures Estimation techniques Algorithmic cost modelling Project duration Feasibility Analysis Feasibility - the measure of how beneficial or practical an information system will...
  • Open Standards for Physical Asset Management OGI Pilot

    Open Standards for Physical Asset Management OGI Pilot

    Use Cases ISDD Based Way of Specifying, Selecting and Buying Devices and Equipment. Use Case. Adding As-Built Information Using OIIE Events. Adding Detail to Prior Work. As-Designed O&M Takeoff using CCOM or Proteus. Debutanizer Tower Condenser Unit P&ID. Worley Parsons:...
  • Marketing Strategy: Based on First Principles and Data

    Marketing Strategy: Based on First Principles and Data

    Customers vary widely in their needs and preferences, whether real or perceived. Their desires even vary for basic commodity products, such as salt and bottled water. Customers' desire for variety is evident in the tens of thousands of products offered...