Preliminary demographic analysis of the shortfin mako shark ...

Preliminary demographic analysis of the shortfin mako shark ...

Preliminary demographic analysis of the shortfin mako shark, Isurus oxyrinchus Mollet H. F. and Cailliet G. M. Contrasting VBGF and Reproductive Parameters for the Shortfin Mako Pratt and Casey 1983 vs. Cailliet et al. 1983 Parameter TLo (to ) TLoo k (7 ln2/k) Growth bands Oldest specimen in vertebrae study Atlantic Female 0.70 m Pacific 0.76 m (to = - 1 yr was assumed) (to = -3.75 yr) 3.73 m 0.203 yr-1 (24 yr) 2/year 12 yr, TL = 3.55 m 3.21 m 0.072 yr-1 (67 yr) 1/year 17 yr, TL = 3.21 m First year growth 56 cm/yr Male Maturity age 3 (TL ca. 2 m ) (using male VBGF)

Fem. Maturity age 5.5 - 8.3 (TL = 2.74-3.18 m) 17 cm/yr age 10 age 23 - 61 Age at Maturity of Female Shortfin Mako (when 10 and 90% are mature) 1. L (t) = 3.73 - (3.73 - 0.70) e(-0.203 t), Pratt and Casey 1983 2. L (t) = 3.21 - (3.21 - 0.76) e(-0.072 t), Cailliet et al. 1983 4 Pratt and Casey 1983 2. 74- 3. 18 m 3 Cailliet et al. 1983 2 1 5. 5- 8. 3 y 0 0 10 23( - 61) y 20 30 Age (years) 40 50 Observed and Calculated (from VBGF) Growth Rates

for the Shortfin Mako 1. L (t) = 3.73 - (3.73 - 0.70) e (-0.203 t), Pratt and Casey 1983 2. L (t) = 3.21 - (3.21 - 0.76) e (-0.072 t), Cailliet et al. 1983 0.7 0.6 Observed Atlantic (Pratt & Casey 1983) (n=17 and n=1) Pr at t & Cas ey 1983 Ob s e r v e d P a c i fi c a) L eanne L aughl i n p e r s . c o mm. ( n =1 0 ) b) Pet er Saul p e r s . c o mm. ( n =1 ) . 0.5 0.4 0.3 E s t i ma t e d P a c i fi c O' B r i a n a n d S u n a d a 1 9 9 4 ( 2 mo d e s ) 0.2 0.1 0.0 Cai l l et et al . 1983 0 1 2 3 4 5 6

Age (years) 7 8 9 10 Band-Count and Capture-Date Frequency Histograms 0.20 2 , 3, 4 Ba nds 0.15 1B 0.10 10 S p r i n g a n d F a l l Da t a n = 50 ( Cai l l i et et al . 1993) 8 6 4 0.05 2 0.6 1.2 1.8 2.4 3.0 3.6

Total Length (m) 20 0.4 Capt ur e dat e hi s t ogr am 0.3 15 0.2 10 0.1 5 1.0 3.4 5.8 8.2 10.6 13.0 Month 20 0.4 Capt ur e dat e hi s t ogr am 0.3 15 0.2 10

0.1 5 1.0 3.4 5.8 8.2 Month 10.6 13.0 Check on Seasonality of #Bands (based on preliminary band count data sheets) 8 Fall Data Spring Data 6 4 ? ? 2 0 6 mo. old -2 0.8 0.9 ? 1 yr ol d? 1.0 1.1 1. 5- 2 yr ol d?

1.2 1.3 Total Length (m) 1.4 1.5 1.6 Growth Rates of Southern California Makos from Modes of Length-Frequency Histograms ~50 cm/yr at age 0.25 yr ~34 cm/yr at age 1 yr Fall data Cailliet et al. 1983 assuming 2 bands/year. ~45 cm/yr at age 0.67 yr ~30 cm/yr at age 1.67 yr O'Brian and Sunada 1994, modes at AL = 42 and 53 cm (TL = 122 and 152 cm) from 2+ and 3+ year old makos, respectively. ~60 cm/yr at age 0.25 yr ~30 cm/yr at age 1.0 yr 20-25 cm/yr at age 2.0 yr Hanan et al. 1993, modes at AL = 34, 44, and 54 cm (TL = 100, 130, and 150-150 cm) from 0.5, 1.5 and 2.5 year old makos, respectively. D09 To be completed if needed 2 bands per year (Atlantic) vs. 1 band year (Pacific)? No reliable data until 1994 Parker, H. W. and F. C. Stott 1965. Age ,size, and vertebral calcification in the basking shark Cetorhinus maximus (Gunnerus). Zoologische Mededelingen (Leiden) 40, 305-319. Received 1/21/97

Comparison of age/length relationship with length/rings relationship suggested 2 rings (=bands?) per year and a gestation time of 3.5 years (7 rings (=bands? at birth Was questionend by Pauly 1978 (not seen by me) Holt and Bedford 1993. Used 3 makos with TL = 1. 7 and 1.8 m in tagging study and used Pratt and Casey 1983 to estimate age of 2-year old juveniles. Branstetter and Musick 1994. 2 Bands/year for the sandtiger D10 Needs work if needed. 4 3 2 1 0 -5 0 5 10 BANDS 15 20 Catch Curves Estimation of Survival from Age Composition (Ricker 1977, Krebs 1989) Right limb is a survivorship curve that is both age-specific and timespecific if the following assumptions are met:

Survival rate is uniform with age Survival rate is uniform with time Sample taken randomly from age groups involved Recruitment is constant for all age groups If these 4 assumptions are violated, the right limb of the catch curve will often not be a straight line. Catch Curve of Female Shortfin Makos 7 6 ** * * ** * 5 * * 4 3 * * 55 *** * 7.4 * * * 1 * 0 403

* * 2 0 Pepper el l 1992 Ca s e y a n d Ko hl e r 1 9 9 2 1 2 Fork Length (m) * * 3 * * 1.0 4 Catch Curve for Exp. Drift Longline Fishery in Southern California during 1988-1991 O'Brian and Sunada 1994 6 - s l ope = Z = 3. 0 ( s . e. 0, 14) 5 4 3 2 1 0 0 1

2 3 Age Estimate fromAL (years) 4 5 Catch Curve for Makos taken by Japanese Longliners off the eastern coast of Australia(Stevens 1992) can add n=98 females, Z = 0.61 but # to small to derive meaningful catch curve. Could try smoothing. 4 3 2 1 0 0 2 4 6 AGE_CA 8 10 Catch Curve for Shortfin Mako off East Northland and Bay of Plenty, New Zealand 1974-90 (Saul and Holdsworth 1992) (females extracted and large females from off-shore added) 8 6 - Sl ope = Z = 1. 2 ( s . e. 0. 1)

4 2 0 -2 0 5 10 Age Estimate fromMass (years) 15 Catch Curve for Female Shortfin Mako from western North Atlantic, n = 1113 (Casey and Kohler 1992) Z= 0.70, too large! but why, 6 5 4 3 2 1 0 0 5 10 Age Estimate fromFL 15 Catch Curve for Shortfin Mako off SouthEastern Australia 1961-90 (Pepperell 1992) 8 7 6 5 4 3 2 1

0 0 5 10 Estimated Age (years) 15 D? Mejuto for years 1983 and 1984 combinend female data for the 2 years then calculatet age_FL. Was done later! 6 5 4 3 2 1 0 0 5 10 AGE_FL 15 Summary of Z's from Catch Curve for Female Shortfin Makos N Z (yr1)(s.e.) Z (yr-1)(s.e.) Location Age from FL & Dates 0.34 (0.02) off SE Australia (FL from mass) 1961 - 1990 Pepperell 1992

98 0.61 (0.17 ) Stevens 1992 1113 0.81 (0.04) 1713 1.02 (0.08)* Age from TL ~2210/2 0.30 (0.02) (TL from mass) (too small) ~2819/2 1.28 (0.11) ~5659/2 1.41 (0.06) 3719/2 2.9 (0.2) (TL from AL) (TL from AL) 1.37 (0.11) off Tasmania 1988 - 1990 WN Atlantic 1962 -1989 off NW & N Spain

1983 off Northland NZ 1975 - 1990 off Southern C A 1981 -1991 off Southern C A 1988-1991 Reference C asey and Kohler 1992 Mejuto 1984 Saul & Holdsworth 1992 Hanan et al. 1993 O'Brian & Sunada 1994 Parameters for Demographic Analysis 1. Length at Age (VBGF). 2. Estimate of natural mortality (M) Hoenig 1983 (requires max. age estimate, we used 7 ln2/k = 23.9 years (k = 0.203 year-1). Pauly 1974 (requires max. size = 3.73 m TL, VBGF k = 0.203 year-1, and water temperature T = 20 C. 3. Estimate of fishing mortality (F) or total mortality (Z = M + F); we used catch-curve derived Z. 4. Natality, to be discussed next. Effective Natality vs. TL 10, 50, 90% mature at TL = 2.60, 2.72, 2.85 m) mx(TL) = (1/4) 0.572 TL2.66 e(-47.481+17.505 TL)/(1+e(-47.481+17.505 TL)); 5 4 3 mean = 12.8/4 = 3.2 2 1 0 2.0 50% mature at 2.72 m

2.5 3.0 Total Length (m) 3.5 4.0 Effective Natality vs. Age 10, 50, 90% mature at age 4.8, 5.4, 6.1yr mx = (1/4) 0.572 TL2.66 . e(-47.481+17.505 TL)/(1+e(-47.481+17.505 TL)); with TL = 3.734-(3.734-0.702)e(-0.203 age) 5 4 3 Mean = 12.8/4 = 3.2 2 1 0 50% mature at age 5.4 yr 0 5 10 15 Age (years) 20 25 Life-History Table of Isurus oxyrinchus Input: VBGF, Z = 0.30 year-1, mx = effective natality Output: Ro = 2.0, G = 9.0 year, r = 0.076 year-1, er = 1.08 Life-History Table of Isurus oxyrinchus Input: VBGF, Z = 0.34 year-1, mx = effective natality

Output: Ro = 1.08, G = 9.72 year, r = 0.0084 year-1, er = 1.01 D23 To be finalized if needed. Got a slight problem because Z derived from the corresponding catch curve is expected to be 0.34 (input) and not 0.348 Life History Parameters for Isurus oxyrinchus (F starts at age 0) Input/ Output M1 (yr-1) M (yr-1) F (yr-1) Hoenig' Pauly's J .P. 92 M-TL (3) s(1) (2) 0.175 0.265 0.175 0 0.265 0 Z (yr-1) 0.175 0.265 0.30 Ro G (yr) r (yr-1) er tx2 (yr) 7.18 9.8 0.201 1.22

3.4 2.76 9.1 0.111 1.12 6.2 1.97 9.0 0.076 1.08 9.2 J .P. 92 Add F Add F Add F M-FL (4) 0.30/ 0.34 0.30 0.30 0.30/ 0.34 0.30 0.05/ 0.01 0.10 0.30 0.15 0.34 0.35 0.40 0.45 1.37 8.8 0.036 1.04 19 1.25

8.7 0.026 1.03 27 0.814 (8.5) -0.024 0.98 (29) 0.540 (8.3) -0.074 0.93 (9.3) Life History Parameters for Isurus oxyrinchus First year mortality 2x subsequent mortalities Input/Output Hoenig's Pauly's J .P. 92 M-TL (3) (1) (2) 0.350 0.530 0.60 J .P. 92 70 0.175 (0.35) 0.175 59 0.265 0.530 0.265 Ro (per G en.) G (year) r (year-1) er (Ni+1/ Ni) 6.0

9.9 0.181 1.20 tx2 (year) 3.8 M1 (year-1) S1 (%) M (year-1) Z1 (year-1) Z (year-1) Add F Add F 0.68 0.70 0.8 55 51 50 45 (0.60) 0.30 (0.68) 0.34 (0.70) 0.35 (0.80) 0.40 2.1 9.4 0.080

1.08 1.5 9.1 0.042 1.04 0.97 (10) -0.003 1.0 0.88 (9.0) -0.014 0.99 0.55 (8.6) -0.070 0.93 8.7 17 (231) (49) (9.9) M-FL (4) Life History Parameters for Isurus oxyrinchus using 3-Year Reproductive Cycle (F= 0.05 and 0.10 year-1start at age 0) Input/Outpu t M1 (year-1) M (year-1) F (year-1) Z (year-1) Hoenig' Pauly's J .P. 92 M-TL (3) s(1)

(2) 0.175 0.265 J .P. 92 Add F Add F 0.175 0 0.175 0.265 0 0.265 Ro G (year) r (year-1) er (Ni+1/ Ni) tx2 (year) 4.28 11.0 0.132 1.14 1.55 10.6 0.0413 1.04 1.08 10.1 0.0072 1.01 0.72 (9.7) -0.033 0.97 0.66 (9.6) -0.044

0.96 0.41 (9.2) -0.093 0.91 5.3 17 96 (21) (16) (7.5) M-FL (4) 0.30/0.34 0.30 0.30 0.34 (s.e. 0.02) (s.e. 0.02) 0.30/0.34 0.30 0.05/0.01 0.10 0.35 0.40 Life History Parameters for Isurus oxyrinchus (F= 0.05 and 0.10 year-1start at age 0) Input/Outpu t M1 (year-1) M (year-1) F (year-1) Z (year-1) Hoenig' Pauly's J .P. 92 M-TL (3) s(1) (2) 0.175

0.265 J .P. 92 Add F Add F 0.175 0 0.175 0.265 0 0.265 Ro G (year) r (year-1) er (Ni+1/ Ni) tx2 (year) 8.81 10.7 0.204 1.23 3.15 10.1 0.114 1.12 2.18 9.9 0.079 1.08 1.46 9.7 0.039 1.04 1.33 9.4 0.029 1.03

0.825 (9.2) -0.021 0.98 3.4 6.1 8.8 18 24 (33) M-FL (4) 0.30/0.34 0.30 0.30 0.34 (s.e. 0.02) (s.e. 0.02) 0.30/0.34 0.30 0.05/0.01 0.10 0.35 0.40 Life History Parameters for Isurus oxyrinchus M1 = 2 x M1+j Input/Output Hoenig's Pauly's J .P. 92 M-TL (3) (1) (2) 0.350 0.530 0.60 J .P. 92 70 0.175 (0.35)

0.175 59 0.265 0.530 0.265 55 51 (0.60) 0.30 (0.68) 0.34 Ro (per Gen.) G (year) r (year-1) er (Ni+1/ Ni) 5.39 10.9 0.155 1.17 1.78 10.3 0.056 1.06 1.20 10.1 0.018 1.02 0.77 9.7 -0.027 0.97 tx2 (year) 4.5 12.4

38.5 (26) M1 (year-1) S1 (%) M (year-1) Z1 (year-1) Z (year-1) M-FL (4) 0.68 Life History Parameters for Isurus oxyrinchus (F= 0.05 and 0.10 year-1start at age 0) Input/Outpu t M1 (year-1) M (year-1) F (year-1) Z (year-1) Hoenig' Pauly's J .P. 92 M-TL (3) s(1) (2) 0.175 0.265 J .P. 92 Add F Add F 0.175 0 0.175 0.265 0 0.265 Ro

G (year) r (year-1) er (Ni+1/ Ni) tx2 (year) 8.81 10.7 0.204 1.23 3.15 10.1 0.114 1.12 2.18 9.9 0.079 1.08 1.46 9.7 0.039 1.04 1.33 9.4 0.029 1.03 0.825 (9.2) -0.021 0.98 3.4 6.1 8.8 18 24 (33)

M-FL (4) 0.30/0.34 0.30 0.30 0.34 (s.e. 0.02) (s.e. 0.02) 0.30/0.34 0.30 0.05/0.01 0.10 0.35 0.40 Life History Parameters for Sharks (Adding to Corts 1995 and 1996) Species Bonnethead Sphyrna tiburo Shortfin mako Isurus oxyrinchus Shortfin mako Isurus oxyrinchus Blacktip shark Ro G r (yr) (yr-1) er tx2 3.45 5.08 0.272 1.313 2.6 C orts and Parsons 1996 2.76 9.1

0.111 1.12 6.2 This study SH age at maturity 2.14 10.8 0.073 1.08 9.4 This study WNA age at mat. 1.93 9.50 0.072 1.075 9.6 Killam & Parsons 1990, C orts 1996 4.47 22.4 0.067 1.069 10 C ailliet 1992 2.25 14.5 0.056 1.057 12 1.28 5.78 0.044 1.045 16 C ailliet et al. 1992 C orts 1995 2.11 26.8 0.028 1.028 25

Natanson et al. 1995, C orts 1996 3.05 49.6 0.023 1.023 30 J ones and G een 19771) 1.48 21.5 0.018 1.06 21.1 0.003 1.018 39 1.003 231 1.27 16.2 0.015 1.22 16.4 0.012 1.015 47 1.012 58 Hoff1990, Sminkey & Musick 1995, 1996, C orts 1996 Hoenig and G ruber 1990, C orts 1996 C archarhinus limbatus Leopard shark Triakis semifasciata Angel shark Squatina c alifornica Atlantic sharpnose Reference (yr) Rhizoprionodon terraenovae Dusky shark C archarhinus o bscurus Spiny dogfish

Squalus acanthias Sandbar shark C archarhinus plumbeus Lemon shark Negaprion brevirostris Finite Rate of Population Change (er) vs. Z (Southern Hemisphere vs. Western North Atlantic Age at Maturity) 1.3 S . He mi s p h e r e A g e a t Ma t u r t i y W. N. A t l a n t i c A g e a t Ma t u r i t y 1.2 1.1 1.0 0.9 0.8 0.15 0.20 0.25 0.30 0.35 0.40 Total Mortality Z (year-1) 0.45 0.50 Finite Population Rate Decrease (er) vs. Z Base calculation with observed fecundity and southern hemisphere age at maturity 1.3 Ba s e c a l c ul a t i o n 1 s t y r . c l a s s mo r t . x 2

1.2 3 year r epr o c y c l e 1.1 1.0 0.9 0.8 0.15 0.20 0.25 0.30 0.35 0.40 Total Mortality Z (year-1) 0.45 0.50

Recently Viewed Presentations

  • Managing Pharmaceutical Waste Twin Lakes Regional Medical ...

    Managing Pharmaceutical Waste Twin Lakes Regional Medical ...

    The NIOSH hazardous drug alert has been published for a couple of years now. Are you acting on it's recommendations in pharmacy and nursing? NIOSH is the research arm of OSHA and even though the alert is only recommendations, OSHA...
  • The Prophets - XICF

    The Prophets - XICF

    Prayer Warrior. Advocate for the oppressed. God is not the detached, unmoved mover of the Aristotelian tradition, but he is the most moved mover, deeply affected by human needs and deeds. God is deeply involved in human history and his...
  • Prezentace aplikace PowerPoint

    Prezentace aplikace PowerPoint

    We get up at half past four on Sundays. We don´t get up at half past four on Sundays. His dogs sleep in the garden. His dogs don´t sleep in the garden. Christian has a shower every day. Christian doesn´t...
  • Vocabulary Workshop - Augusta County Public Schools

    Vocabulary Workshop - Augusta County Public Schools

    Synonym: beatific. Antonyms: impish, devilish, diabolic, fiendish. How well those photographs of the twins by Anne Geddes captures the . cherubic. expressions on their faces, they look so . sweet and innocent.
  • IB BIOLOGY Topic 1 Cell Biology

    IB BIOLOGY Topic 1 Cell Biology

    IB BIOLOGYTopic 1 Cell Biology. 1.3-1.6. Membrane Structure. 1915- scientists knew structure of membranes included proteins and lipids. Davson and Danielli Model 1935. Lipid bilayer model. Covered on both sides with thin layer of globular protein.
  • TeamSTEPPS 2.0 Module 3: Communication

    TeamSTEPPS 2.0 Module 3: Communication

    Module 3: Communication. Online Master Trainer Course. Welcome to the . Welcome to Module 3 of the TeamSTEPPS 2.0 online Master Trainer course: Communication. This is Dr. Brigetta Craft, and I will be guiding you through this module. Learning to...
  • Canada Trip - Главная

    Canada Trip - Главная

    The Scientists and Their Technologies ISTC Volume in Bio Broad agency support on all sides: Min Atom, Agr, Health, Science, RMA, RAS, RAAS, et al. Sector experiencing most rapid growth ISTC Active Bio-Partners US Governmental Partners: U.S. Defense Threat Reduction...
  • Business Rules Management Systems Managing Complex Decisions in

    Business Rules Management Systems Managing Complex Decisions in

    * IBM Confidential * * * IBM Confidential BRMS for Legacy Applications Rules are generated as COBOL copybook for execution in IMS, CICS, batch Business Rule Management System Rules are Defined, Analyzed and Maintained User Tools Rules are Stored and...