Tracking Moving Objects in Anonymized Trajectories Nikolay Vyahhi1,

Tracking Moving Objects in Anonymized Trajectories Nikolay Vyahhi1,

Tracking Moving Objects in Anonymized Trajectories Nikolay Vyahhi1, Spiridon Bakiras2, Panos Kalnis3, and Gabriel Ghinita3 St. Petersburg State University 2 John Jay College, City Univ. of New York 3 National University of Singapore 1 Motivation Collection of Trajectory Data Example: Traffic monitoring system

Data expected to be anonymous GPS or Sensors deployed across a city Queries: Predict traffic conditions Remove ID Reconstruction of original trajectories E.g., Police tracking a suspect 2

Problem Statement Given a large database with anonymized spatio-temporal measurements, reconstruct the original object trajectories Requirements Efficiency (large databases) Accuracy (useful results) 3 Problem Statement

Input: A series of M snapshots Si, each containing exactly N measurements from timestamp ti Output: A set of N trajectories Each measurement can be associated with a single trajectory M=N=3 4

Related work: Multiple Target Tracking This problem is closely related to multiple target tracking (MTT) algorithms Studied in the field of radar technology Three major categories Nearest neighbor (NN) Joint probabilistic data association (JPDA)

Multiple hypothesis tracking (MHT) 5 Related work: NN and JPDA They work in a single scan of the dataset Greedy approach: in each timestamp, every sample is associated with a single track Objective: minimize the error across all associations in the current timestamp Performance: Efficient can work in polynomial time Greedy approach results in many false associations

6 Related work: MHT Multiple hypotheses are maintained Joint probabilities are calculated recursively when new measurements are received Each association is based on both previous and subsequent data (multiple scans) Unfeasible hypotheses are eventually eliminated Performance:

Very accurate Computational and space complexity is exponential to the number of measurements 7 Comparison Very accurate Very slow Large Fast errors

Very accurate Much faster than MHT 8 Our Approach MCMF: Min-cost Max-flow Transform the tracking problem into a min-cost max-flow problem Min-cost max-flow (graph algorithm)

Input: a weighted graph G with two special nodes (source s and destination t) Objective: find the maximum flow that can be sent from s to t that results in the minimum cost Well-known algorithms exist that work in polynomial time 9 Transformation All edges have capacity 1 Node id (ti, pi, pj): the object moves from location pi

in timestamp ti to location pj in timestamp ti+1 10 Calculating the Cost Values Assume two successive measurements (pi and pj) belong to the same track Use these values to predict the next location Calculate the error (i.e., cost) for every possible location pk 11 Limitation of this Approach

Problem: A single measurement can be associated with multiple tracks! 12 Solution: Create a Block for each Measurement Block for kth measurement of mth timestamp (pm,k) Corresponds to all partial tracks pm-1,i pm,k pm+1,j

A block containing a flow is marked as active The only possible route inside an active block, is through the reverse path of the existing flow 13 Block Functionality Block for p2,1 Block for p3,1

Original track: p1,1 p2,1 p3,1 Original track: p2,1 p3,1 p4,1 New track: New track: p1,1 p2,1 p3,2 p2,2 p3,1 p4,1 14 Improving the Running Time Flow network is too large

Assume any object can travel at most Rmax distance between two consecutive timestamps. Rmax depends on Inefficient, since solution requires multiple shortest path calculations The maximum speed of the objects The time interval between two timestamps This reduces significantly the number of vertices and edges inside each block

15 The Tracking Algorithm Successive Shortest Path Algorithm Most efficient implementation: At each iteration, send a single flow unit across

the shortest path from s to t Total of N iterations in our case Dijkstra with Fibonacci heap for priority queue Graph contains negative weights, but can utilize vertex potentials to avoid this (provided that there are no negative weight cycles) Bellman-Ford also works very well 16 Dealing with Negative Weight Cycles Negative weight cycles do appear in MCMF calculations In this case, follow a greedy approach: Output all the tracks that are discovered so far

they might not be optimal Remove all vertices and edges associated with these tracks from the flow network Start a new min-cost max-flow calculation on the reduced graph 17 Complexity Computational:

N iterations of a shortest path algorithm O(MN2K(log(MNK) + K)) for Dijkstra with Fibonacci heap K is the average number of feasible associations (due to Rmax) per measurement Space: O(MNK2) for storing the graph 18

Experimental Evaluation Data generator: Road map of San Francisco city For each object, randomly select a starting point and a destination point The object then follows the shortest path between the two points

At each timestamp, every object i covers a distance di [0,Rmax] Number of measurements: 50,000 to 500,000 19 Experimental Evaluation Competitor: Global Nearest Neighbor (GNN) Employs clustering within each snapshot Considered the best single scan algorithm runs in O(MNC2) time (C is the average cluster

size) Performance metrics: CPU time Success rate percentage of partial tracks (triplets) that agree with original data 20 Variable N CPU time [sec] Success rate [%] 21 Variable Rmax (speed)

CPU time [sec] Success rate [%] 22 Points to Remember Multiple-Target Tracking Large Anonymized Trajectory Databases Existing methods are either inefficient or inaccurate We proposed a polynomial time solution based on a novel transformation of the MTT problem into a min-cost max-flow problem

Very accurate Need to improve the running time 23 Bibliography on LBS Privacy http://anonym.comp.nus.edu.sg 24

Recently Viewed Presentations

  • FNAL Theory Beyond the Standard Model

    FNAL Theory Beyond the Standard Model

    FNAL Theory Beyond the Standard Model Jose Santiago DOE Annual Program Review 2006 Theory Breakout Session May 17, 2006 Outline Why BSM physics? BSM physics in the theory group Overview of work from the group Supersymmetry Extra Dimensions and String...
  • Unit 2 - Right Triangles and Trigonometry

    Unit 2 - Right Triangles and Trigonometry

    Unit 2 - Right Triangles and Trigonometry. Chapter 8. Triangle Inequality Theorem. Need to know if a set of numbers can actually form a triangle before you classify it. Triangle Inequality Theorem: The sum of any two sides must be...
  • Manor Adventure Shropshire - st-josephs-upminster.net

    Manor Adventure Shropshire - st-josephs-upminster.net

    Welcome to our meeting for Year 6 'Manor Adventure 2019' 10th - 14th June 2019 Manor Adventure Established in 1991 Handles over 27,000 students + 500 families each year Manor offers exceptional facilities within a 100 acre estate in an...
  • Delivering Real Science Labs Online Using Web Remote

    Delivering Real Science Labs Online Using Web Remote

    Mitosis & Meiosis. Parasitology. ... Students access NANSLO control panels through the Internet allowing them to perform the lab activity remotely from anywhere in the world where an Internet connection is available. ... Remote lab users feel and behave as...
  • HeLP MN Seniors: A Health Literacy Program for

    HeLP MN Seniors: A Health Literacy Program for

    Looking for, finding, and evaluating online health information. Discussing information with healthcare providers. Evaluation Method. Survey (initially planned as a focus group) Findings. No focus group response; 55% survey response rate. More or same amount of information requested for each...
  • Sampling Gabor Noise in the Spatial Domain - TU Wien

    Sampling Gabor Noise in the Spatial Domain - TU Wien

    Gabor Noise - Motivation. 5/28/2014. Sampling Gabor Noise in the Spatial Domain. Image: [Lagae 09] Procedural noise extensivelyused, no ultimate noise definition. Gabor noise enables the design of an extremely large panel of textures (wood, skin, rust, fabric, marble). Advantages:...
  • Disease, Surgical , Procedural and Observational Abbreviations ADR

    Disease, Surgical , Procedural and Observational Abbreviations ADR

    F-A fecal analysis. FB foreign body. FD feline distemper (panleukopenia) FeLV feline leukemia virus. ... NVL no visible lesions. OCD osteochondritisdesiccans. OFA Orthopedic Foundation for Animals. OHE ovariohysterectomy (spray)
  • Badger Hockey: 04-05 "Good to Great"

    Badger Hockey: 04-05 "Good to Great"

    Roger Neilson's Coaching Clinic Developing Basketball Intelligence: McCormick "Drills alone cannot teach skills" Instead, Players need a variety of activities, From individual practice to master the basic technical skills To team practice and games To practice the execution of the...