Plate tectonics Continental Drift Alfred Wegener (1910) Hypothesized

Plate tectonics Continental Drift Alfred Wegener (1910) Hypothesized

Plate tectonics Continental Drift Alfred Wegener (1910) Hypothesized that all the continents were once joined together in a single landmass call Pangaea and have since drifted (like rafts in water) This became known as CONTINENTAL DRIFT Pangaea- supercontinent (350-200 million years ago) (Pangaea

means all lands in latin) Others had similar ideas, however Wegener was the first to have scientific evidence to support this idea Plate tectonics Evidence for Continental drift 1.)Geologic features Coastlines of some continents seemed to fit together like a jig saw puzzle Mountain ranges in N. America line up with those in Europe Plate tectonics 2.) Fossils- any trace of an ancient organism that is preserved in rock Glossopteris- fern like plant with leaves the

shape of a tongue, live 250 million years ago Found in Africa, South America, Australia, India and Antarctica These land masses are now separated by oceans indicating that Pangea once existed Mesosaurus and Lystrosaurus- fresh water reptiles Fossils found in places separated by oceans Neither reptile could have swum that great of a distance in salt water

- These reptiles lived on a single landmass that split apart Plate tectonics 3.) Climate Fossils of tropical plants found on an island in the arctic ocean Scratches in rocks made by glaciers found in South Africa Coal fields in Europe and North America lined up Coal only forms in tropical swamp areas

****When continents move, north or south, they take the fossils and rocks that formed in the past with them Plate tectonics Continental DriftREJECTED Wegener provide supporting evidence to the continental drift theory BUT. Could not identify the mechanism that cause the plates to move (the force that caused the push or pull) because of this, most geologist rejected his theory Plate tectonics Sea floor Spreading and The theory of Plate Tectonics Plate- A section of the lithosphere that slowly moves over the asthenosphere, carrying pieces of continental and oceanic crust

Theory of Plate Tectonics- Earths plates are in slow, constant motion, driven by convection currents in the mantle. Explains formation, movement and subduction of Earths plates Subduction-the process by which gravity pulls denser plate edges downward into the mantle. Earths Plates Plate boundaries divide the lithosphere into large plates. Faults-breaks in the Earths crust where rocks have slipped past each other, form along these boundaries Plate tectonics Plate motion over time

Satellites are used to measure plate motion precisely. Plates move very slowly 1-12 cm per year North American and Eurasian plate move about 2.5 cm/year This is about the same speed in which your fingernails grow Although very slow the plates have been moving for hundreds of millions of years, they have moved great distances. Plate Motion Since the breakup of Pangaea, the continents have taken about 200 million years to move to their present location. 200 Million Years Ago Today 115 Million Years ago Earth Plate tectonics Plate Boundaries

Divergent Boundariestwo plates slowly move away from each other In the ocean = Mid Ocean Ridge (MOR) Underwater mountain ranges new crust is added during process of sea floor spreading ex. Mid Atlantic Ridge, Atlantic Ocean On land = Rift Valley ex. East African Rift System, Africa Plate tectonics

Sea Floor Spreading- the process by which molten material adds new oceanic crust to the ocean floor This occurs at mid-ocean ridges (MOR) How sea floor spreading works: MOR form crack in the oceanic crust, called central valley (see pic. on previous slide) Along the ridge, molten material from inside Earth rises, erupts, cools and hardens to form a solid strip of rock Sea Floor spreading adds more crust to the ocean floor while older strips of rock move outward from either side of the ridge Does the ocean floor just keep growing and growing? NO! On the opposite side, the ocean floor plunges into deep ocean trenches, sinking back into the mantle This is called SUBDUCTION

Plate tectonics Evidence of Sea Floor Spreading 1.) Drilling samples Scientists drilled into the ocean floor Farther away the sample was taken from the MOR, the older the rock was Youngest rocks were found at the center of the MOR The rocks age

shows that sea floor spreading occurs **As distance from the ridge increases, age increases Plate Tectonics 2.) Magnetic Stripes Lava contains iron Iron is magnetic (points to magnetic north) When the lava solidifies, the iron will be frozen in the direction of the magnetic north at the time of the eruption

Direction of the iron at the seafloor is not always the same. The patterns are mirror images on either side Width of stripe indicates how long the pole was in the normal or reversed position Wider = longer Ocean Floors Mid-ocean ridges rise

from the sea floor like stitches on the seams of a baseball. Plate Tectonics Convergent Boundary-boundary where two plates collide or come together Density of plates determine which one comes out on top Three types of convergent boundaries 1.) Oceanic-Oceanic-the one that is more dense will sink beneath the one that is less dense often forms island arc-volcanoes which erupt through the overriding plate as the descending plate melts below it

Ex. Aleutian Islands of Alaska 2.) Oceanic-Continental-oceanic crust is more dense so it will sink below continental Mountains (Andes) and volcanoes can form-Volcanic Mountain Range -Water leaves sinking crust, rises into wedge of mantle above it, the water lowers the melting point of the mantle, mantle partially melts and volcano forms -Ex. Andes Mountains Deep ocean trenches-A deep valley along the ocean floor beneath which oceanic crust slowly sinks toward the mantle Plate tectonics Subduction- the process by which oceanic crust sinks beneath a deep-ocean trench and back into the mantle at

a convergent boundary New crust is hotless dense Old crust is coolmore dense Cool, dense crust of ocean might collide with edge of continent Gravity pulls the older, more dense oceanic crust down beneath the trench into the mantle Sea Floor spreading and subduction: work together change the size and shape of the oceans They move the ocean floor like a large conveyor belt. Size determined by how fast new crust is being created and old crust being swallowed Ocean surrounded by many trenchesmay shrink Ocean with few trencheswill probably grow larger (Atlantic p. 173) Subduction Oceanic crust created along a mid-ocean ridge is destroyed at a deep-ocean trench. During the process of subduction,

oceanic crust sinks down beneath the trench into the mantle. Plate tectonics Convergent Boundaries (cont.) Continental-Continental-neither is dense enough to sink into mantle, mountains form Ex Indian Plate and Eurasian plate collide to form Himalayans Transform Boundaries-place where two plates slip past each other, moving in opposite directions. Plates are rocky and jagged, and get stuck, forces inside Earth cause plates to become unstuck, sudden release of energy in the form of an earthquake Crust is neither created nor destroyed. Ex. San Andreas Fault in California Plate tectonics

Forces in Earths Crust Stress- A force that acts on a rock to change its shape Type of stress Definition Boundary Type of Fault Tension Stretches rock so that it becomes thinner in the middle Divergent Normal Fault

Compression Squeezes rock until it folds or breaks Convergent Reverse Fault or Thrust Fault Shearing Pushes rock in opposite directions, sideways movement, causes a rock to slip or break apart Transform Strike Slip

Plate Tectonics Stress in Earths Crust Stress can push, pull, or squeeze rock in Earths crust. Three kinds of stress can occur in the crust. Plate Tectonics Fault-A break in Earths crust along which rocks move. Types of Faults Normal Fault-due to tensional stress, hanging wall moves down, footwall moves up Reverse Fault-due to compressional stress, hanging wall moves up, footwall moves down

Strike Slip Fault-due to shear stress, no hanging wall or footwall, rocks on either side move past each other sideway with little up or down motion **A Thrust Fault is a Reverse Fault with a low angle Plate Tectonics Folding of Earths Crust Fold = Bends in Earths crust due to compression causes crust to become shorter and thicker

Anticline-fold that bends upward into an arch Syncline-fold that bends downward to form V-shape Appalachian Mountains in PA are anticlines and synclines The collision of two plates causes this folding which creates FOLDED MOUNTAINS such as Himalayas (Asia), Alps (Europe) Plate Tectonics Anticlines and Synclines Compression can cause folds in the crust. Two types of folding are anticlines, which arch up, and synclines, which dip down. Plate Tectonics Stretching Earths Crust Fault Block Mountains

1.) Two plates move away from each other 2.) Normal Faults created on either side 3.) Hanging wall on each side drops down 4.) Block in between stands above surrounding valleys. Tension and Normal Faults As tension forces pull the crust apart, two normal faults can form a fault-block mountain range. Plate Tectonics Tension and Normal Faults What are the hanging wall and the two footwalls in diagram A? What is the new position of the hanging wall after movement occurs in diagram B?

Plate Tectonics Uplifting Earths Crust Plateau-A large landform that has high elevation and a more or less level surface above sea level Cause by the same forces (uplift) that causes mountains **it is wider than it is tall The Kaibab Plateau Look at the sequence of drawings. In your own words, describe what happens in the last two diagrams. Plate Tectonics Earthquakes (EQ) Earthquake-vibration of Earth produced by the rapid release of energy **caused by a slippage along a fault Focus-The point within the Earth where the EQ starts -energy radiates in all directions in the form of waves

Epicenter- location on the surface of the Earth directly above the focus Seismologist-person who studies EQ Seismograph- instrument that records EQ waves Plate Tectonics Earthquakes produce two types of waves Surface waves-move along Earths surface, move up and down and side to side, most destructive waves Body waves 1.) P (primary) wavesLongitudinal or compression waves (or push pull waves) particles move in the same direction (parallel to) direction the wave is traveling like slinky Can travel through solids and liquids 2.) S (shear) waves transverse waves move particles at right angles (perpendicular) to material Like jump rope

CANNOT Travel through liquids or gases, only through solids Travel time: In order from fastest to slowest P wave, S wave, surface wave Plate Tectonics Locating an Earthquake: 1.) EQ DistanceCompare the difference in speed of P and S wave to find the distance traveled The greater the difference in arrival time, the greater the distance to the epicenter Use a travel-time graph to find how far the epicenter is First, find the time interval between the arrival of the first P and the first S wave Second, find the time spread between the P and S wave curve - This will tell you distance from the epicenter to the seismograph

for that location - BUT we do not know in what direction! Plate Tectonics Travel-time graph can tell you distance to the epicenter but it does not tell us in what direction To find the exact location, travel-time graphs from three or more seismographs are needed Plate Tectonics We now know distance but the EQ could be in any direction from the seismic station. 2.) EQ direction To find the exact location, time-travel graphs from three or more seismographs are needed

Draw a circle around each seismic station each circle represents the distance of the epicenter to each station The point where the three circles intersect is the epicenter of quake. Plate Tectonics Locating the epicenter with data from three seismographs 1st circle tells you ALL possible epicenters for that city 2nd circlenarrows down possible location of epicenter to TWO locations

(where the two circles intersect) 3rd circlepinpoints the location of the epicenter (where all three circles intersect) Plate Tectonics Measuring Earthquakes Scientists have used two different types of measurements to describe the size of an earthquake 1.) intensity-(qualitative) measure of amount of shaking based on amount of damage for a given location 2.) magnitude-(quantitative) rely on calculations using seismograms, measures size of seismic waves or amount of energy released. Richter Scale-size of seismic waves based amplitude of largest seismic wave recorded on a seismogram useful for small shallow EQ within 500 km of epicenter

Familiar but outdated-used on news reports but not by scientists Moment Magnitude-estimates energy released Based on the amount of displacement that occur along fault zone - The average movement along the fault - The area of the surface break (Surface area of fault) - strength of rock broken (rigidity of rock) Earthquake HazardsDamage depends on intensity and duration of vibrations, material on which buildings are constructed, design of the building Liquefaction-soils and other unconsolidated materials saturated with water are turned into a liquid that is not able to support buildings. Tsunamis-Japanese word for seismic sea wave Landslides Fire Plate Tectonics Volcanoes and Plate Tectonics Volcano-a weak spot in the crust where magma has come to the surface

Magma-molten mixture of rock-forming substances, gases and water from the mantle Lava-liquid magma that reaches the surface Volcanoes form along boundaries of Earths plates Divergent Boundaries-fractures allow magma to reach Earths surface Convergent Boundary Oceanic/oceanic-subduction occurs, water from crust leaves and rises in wedge of mantle causing melting point of mantle to decrease resulting in melting. Melted magma breaks through ocean floor creating volcanoes Island Arc is formed-string of volcanoes that form as the result of subduction of one oceanic plate beneath another oceanic plate - Aleutian Islands of Alaska Oceanic/continental- oceanic plates subducts beneath continental plate Andes Mountains, Mt. St. Helens, Mount Rainer

Hot spots A volcano forms above a hot spot when magma erupts through the crust and reaches the surface Hawaiian Islands Plate Tectonics The Ring of Fire The Ring of Fire is a belt of volcanoes that circles the Pacific Ocean. As with most of Earths volcanoes, these volcanoes form along Volcanoes and

boundaries of tectonic Converging plates. Boundaries Volcanoes often form where two plates collide. Hot Spot The Hawaiian Islands have formed one by one as the Pacific plate drifts slowly over a hot spot. This

process has taken millions of years. Plate Tectonics Volcanic Eruptions What happens? Magma forms in asthenosphere just below lithosphere Magma is less dense (its hot) so it rises into tiny cracks, if it reaches surface, a volcano can form Inside a volcano Magma chamber-pocket beneath a volcano where magma collects Pipe-long tube through which magma moves from the magma chamber to Earths surface Vent-opening where molten rock and gas leave Lava flow-area covered by lava as it pours out of a volcanos

vent Crater-bowl shaped area that forms around a volcanos central opening Inside a Volcano A volcano is made up of many different parts. Plate Tectonics Volcanic Eruption When a volcano erupts, the force of the expanding gases pushes the magma from magma chamber pipe vent Two types of eruptions (determined by silica content) Silica-material found in magma, composed of oxygen and silicon, primary substance of crust and mantle Quiet-magma is hot or low in silica, gases escape slowly, lava oozes quietly from vent, can flow for many Km Forms two types of rock (see p. 193 in textbook) Pahoehoe- from fast moving, hot lava that is thin and runny Aa-from cooler, thicker lava that is slower moving

Quiet eruptions are responsible for building Hawaii HAZARDsets fire to and burns everything in its path, can cover large areas with a thick layer of lava Explosive-thick, sticky magma that is high in silica Magma can build up in pipe and get stuck like a cork, pressure builds up from gases and eventually there is an explosion, gases push magma out with great force Lava is thrown powerfully into air, breaks into pieces that cool and harden quickly Ash- smallest particles, fine, like dust Cinders-pebble sized particles Bombs-golf ball to car sized Pyroclastic flow- The flow of ash, cinders, bombs, and gases down the side of a volcano during an explosive eruption. HAZARDlandslides of mud, melted snow and rock Plate Tectonics Types of Volcanoes

Shield built almost entirely of fluid lava flows gently sloping cone of flat, domical shape, with a profile much like that of a warrior's shield They are built up slowly by the accretion of thousands of highly fluid lava flows called basalt lava that spread widely over great distances, and then cool as thin, gently dipping sheets. Hawaiian Islands are composed of linear chains of these volcanoes including Kilauea and Mauna Loa on the island of Hawaii-- two of the world's most active volcanoes. Stratovolcano- (strata = layers) steep-sided, symmetrical cone shape HUGE- may rise as much as 8,000 feet above their bases built of alternating layers of lava flows, volcanic ash, cinders, blocks, and bombs tend to erupt explosively and pose considerable danger to nearby life and property. Mount Fuji in Japan, Mount Cotopaxi in Ecuador, Mount Shasta in California,

Mount Hood in Oregon, and Mount St. Helens and Mount Rainier in Washington. Cinder Cones simplest type of volcano built from particles and blobs of congealed lava ejected from a single vent As the gas-charged lava is blown violently into the air, it breaks into small fragments that solidify and fall as cinders around the vent to form a circular or oval cone. Most have a bowl-shaped crater at the summit and rarely rise more than a thousand feet or so above their surroundings. western North America Plate Tectonics Stages of Volcanic Activity Active-live volcano, is erupting or has shown signs it will erupt in the near future

Dormant- sleeping volcano, not currently active but able to become active Extinct- dead volcano, no longer active and is unlikely to erupt again Prediction- not possible but Geologists monitor Surface changes in elevation and tilt with tiltmeter Amount of escaping gases Small earthquakes that occur around volcano Rising temperatures in ground water

Recently Viewed Presentations

  • Chapter 7

    Chapter 7

    turn a dye called litmus from blue to red. (litmus is red in acid). dissolve active metals producing hydrogen gas . react with bases to form water and ionic compounds called salts. Base - Any substance that produces OH-1 ions...
  • Temperate Grassland - WordPress.com

    Temperate Grassland - WordPress.com

    Temperate Grassland Geological Features Temperate grasslands are large, flat lands and homes to a large community of organisms The soil is very rich, therefore many types of grasses and shrubs grow During the winter, grasses will die resulting in a...
  • WFD Rapid Response Team - Georgia Department of Economic ...

    WFD Rapid Response Team - Georgia Department of Economic ...

    WFD Rapid Response Coordinator will then contact the appropriate LWDA with the WARN details. GWROPP (VOS) will also submit an electronic notification to the appropriate partners (GDOL, USDOL, DCA) ... Local Chamber of Commerce. Regional Commissions. Local Economic Development Authorities....
  • Option 3 - SFU.ca

    Option 3 - SFU.ca

    Black-Scholes Assume free transferability, but not for ESO Assume non-contingent exercisable option, but ESO void as soon as holders leave the company Contain lots of estimations Lattice-Binominal Can be applied to more different kinds of options Still contain estimations Black-Scholes...
  • How to Write a Do You Know?  Paragraph

    How to Write a Do You Know? Paragraph

    These main points, examples, or details can be compared to the ingredients of a hamburger, such as the lettuce, tomato, cheese, and hamburger patty. But what's missing? Hmm… Bottom Bun Concluding Sentence The bottom bun of a hamburger helps hold...
  • Community Driver Mentor Programme Welcome Introductions - Partners

    Community Driver Mentor Programme Welcome Introductions - Partners

    • Learning to drive well/safely with all other road users is more difficult • The attitude and experience of the driver is critical for overall driver competence • Resource support: Road code/www.practice.co.nz
  • Construction & Projects Forum What have we learned?

    Construction & Projects Forum What have we learned?

    Construction & Projects Forum What have we learned? Corporate strategies to face future new conditions in the Gulf Rizwan A. Shah Managing Director, Leader Capital Projects Advisory
  • MEDICARE OUTLOOK: An Analysis of Potential Policy Changes

    MEDICARE OUTLOOK: An Analysis of Potential Policy Changes

    Patient Freedom Act of 2017: Sens. Cassidy and Collins Limits charges for OON emergency care, including for Medicare beneficiaries. American Health Care Reform Act of 2017: Rep. Roe All Medicare provisions in the ACA repealed. Expands and provides new flexibilities...