Lesson 13: Nuclear Propulsion Basics

Lesson 13: Nuclear Propulsion Basics

Nuclear Propulsion Basics Dr. Andrew Ketsdever Nuclear Propulsion Introduction Nuclear Thermal Propulsion (NTP) System that utilizes a nuclear fission reactor Energy released from controlled fission of material is transferred to a propellant gas Fission Absorption of neutrons in a fuel material Excitation of nucleus causes fuel atoms to split

Two new nulcei on average (Fission Fragments) High KE from release of nuclear binding energy Usually radioactive 1 to 3 free neutrons Necessary to keep reaction going Critical if each fission events leads to another Can be absorbed by reactor material or leak from reactor Nuclear Propulsion ADVANTAGES High Isp (2-10x that of chemical systems) Low Specific Mass (kg/kW)

High Power Allows High Thrust High F/W Use of Any Propellant Safety Reduced Radiation for Some Missions A Nuclear/Chemical Comparison One gram of U-235 can release enough energy during fission to raise the temperature of 66 million gallons of water from 25oC to

100oC. By contrast, to accomplish the same sort of feat by burning pure octane, it would require 1.65 million gallons of the fuel Nuclear Propulsion DISADVANTAGES: Political Issues Social Issues Low Technology Readiness Level (Maturity) Radiation issues (Shielding) High Inert Mass

Nuclear Propulsion Schematic Propellant Tank: Similar to tanks discussed for liquid propulsion systems. Tank can also be used as a radiation shield. Turbopump: Provides high pressure propellants to the heat exchange region of the propulsion system. Warm gas from regeneratively cooled nozzle drives the

turbines. Radiation Shield: Protects the payload from radiation from the reactor by absorbing or reflecting neutrons and gamma rays. Nuclear Reactor Nuclear Reactor Reactor Schematic

Nuclear Reactor Reflector Reflects neutrons produced in the reaction back into the core Prevents neutron leakage Maintains reaction balance Can be used to reduce the size of the reactor Typically made of Beryllium Nuclear Reactor Moderator Slows down neutrons in the reactor Typically made of low atomic mass material

LiH, Graphite, D2O H2O absorbs neutrons (light water reactor) Slow (or Thermal) Reactor Uses moderator to slow down neutrons for efficient fissioning of low activation energy fuels Fast Reactor No moderator. Uses high kinetic energy neutrons for fissioning of high activation energy fuels Nuclear Reactor Fuel Element

Contains the fissile fuel Usually Uranium or Plutonium Contains the propellant flow channels High thrust requires high contact surface area for the propellants Heat exchange in the flow channels critical in determining efficiency and performance of the system Nuclear Reactor Control Rods Contains material that absorbs neutrons Decreases and controls neutron population

Controls reaction rate When fully inserted, they can shut down the reactor Configuration and placement is driven by the engine power level requirements Typically made of Boron Axial Rods Raised and lowered into place. Depth of rods in the reactor controls the neutron population Drum Rods Rotated into place with reflecting and absorbing sides

NERVA Nuclear Engine for Rocket Vehicle Applications Power: 300 200,000 MW Thrust: 890 kN Isp: 835 sec Hydrogen propellant Reactor

Uranium-Carbide fuel Graphite moderator 12 drum-type control rods Boron and Beryllium PBR Particle Bed Reactor Core consists of a number of fuel particles packed in a bed surrounded by moderator Maximizes the fuels surface area Increases the propellant temperature Propellant directly cools the fuel particles

Advantages over the NERVA Higher Isp Higher F Higher F/W (~20 compared to ~4 for NERVA) Disadvantages over the NERVA Maturity Cost CERMET Fast reactor uses high energy neutrons (>1 MeV) No moderator

Uranium-Dioxide fuel in tungsten matrix Advantages Long lifetime Ability to restart Fuel compatability with hydrogen propellant Nuclear Propulsion Table 1: Mars Mission Comparison - Round Trip System Chemical (H2/O2)

NTR - Solid Core Payload Mass 100 tonnes 100 tonnes Travel Time 1 year 1 year

Mission Delta-V 7.7 km/s 7.7 km/s Isp 500 s 1000 s

Mass Ratio 4.806 2.192 Structural Mass 25 tonnes (e=0.05) 15 tonnes (e=0.10) Propellant Mass

475 tonnes 137 tonnes Total Initial Mass in LEO 600 tonnes 252 tonnes Payload Fraction

0.167 0.397 Basic Atomic Structure Atoms are fundamental particles of matter Composed of three types of sub-atomic particles Protons Neutrons Electrons

The nucleus contains protons and neutrons Most of the atoms mass Small part of the atoms volume Electron Cloud Contains electrons Most of the atoms volume Basic Atomic Structure Atomic Number Number of protons in the nucleus

Mass Number Number of protons AND neutrons in the nucleus Mass of proton : 1.6726 x 10-27 kg Mass of neutron: 1.6749 x 10-27 kg Mass of electron: 0.00091x10-27 kg Basic Atomic Structure Isotope Same element implies two atoms have the same atomic number Isotopes of a given element have the same

atomic number but a different mass number Same number of protons in the nucleus Different number of neutrons in the nucleus Hydrogen Deuterium Tritium Basic Nuclear Physics An atom consists of a small, positively charged nucleus surrounded by a negatively charged

cloud of electrons Nucleus Positive protons Neutral neutrons Bond together by the strong nuclear force Stronger than the electrostatic force binding electrons to the nucleus or repelling protons from one another Limited in range to a few x 10-15 m Because neutrons are electrically neutral, they are unaffected by Coloumbic or nuclear forces until they reach within 10-15 m of an atomic nucleus

Best particles to use for FISSION Fission Fission is a nuclear process in which a heavy nucleus splits into two smaller nuclei The Fission Products (FP) can be in any combination (with a given probability) so long as the number of protons and neutrons in the products sum up to those in the initial fissioning nucleus The free neutrons produced go on to continue the fissioning cycle (chain reaction, criticality) A great amount of energy can be released in fission because for heavy nuclei, the summed masses of the

lighter product nuclei is less than the mass of the fissioning nucleus Fission Reaction Energy The binding energy of the nucleus is directly related to the amount of energy released in a fission reaction The energy associated with the difference in mass of the products and the fissioning atom is the binding energy

Z (m p me ) ( A Z )mn M atom E c 2 Nuclear Binding Energy Defect Mass and Energy Nuclear masses can change due to reactions because this "lost" mass is converted into energy.

For example, combining a proton (p) and a neutron (n) will produce a deuteron (d). If we add up the masses of the proton and the neutron, we get mp + mn = 1.00728u + 1.00867u = 2.01595u The mass of the deuteron is md = 2.01355u Therefore change in mass = (mp + mn) - md = (1.00728u + 1.00867u) (2.01355u) = 0.00240u An atomic mass unit (u) is equal to one-twelfth of the mass of a C-12 atom which is about 1.66 X 10-27 kg. So, using E=mc2 gives an energy/u = (1.66 X 10-27 kg)(3.00 X 108 m/ s)2(1eV/1.6 X 10-19 J) which is about 931 MeV/u. So, our final energy is 2.24 MeV. The quantity 2.24MeV is the binding energy of the deuteron.

Uranium 235 Energetics Fission Products: 165 MeV Primary Gamma Radiation: 7 MeV Neutrons: 5 MeV Beta and Gamma Decay of FP: 13 MeV Neutrinos: 10 MeV

TOTAL: 200 MeV Radioactivity In 1899, Ernest Rutheford discovered Uranium produced three different kinds of radiation. Separated the radiation by penetrating ability Called them a, b, g, b, gb, g, b, gg a, b, g-Radiation stopped by paper (He nucleus, 24 He ) b, g-Radiation stopped by 6mm of Aluminum (Electrons produced in the nucleus) g-Radiation stopped by several mm of Lead

(Photons with wavelength shortward of 124 pm or energies greater than 10 keV) Half-Life The half life is the amount of time necessary for of a radioactive material to decay Starting with 100g of Bismuth Half life of 5 days 50 g of bismuth

after 5 days 50 g of thallium a, b, g-Particle Decay The emission of an a, b, g particle, or 4He nucleus, is a process called a, b, g decay Since a particles contain protons and neutrons, they must come from the nucleus of an atom b, gParticle Decay

b, g particles are negatively charged electrons emitted by the nucleus Since the mass of an electron is a small fraction of an atomic mass unit, the mass of a nucleus that undergoes b, g decay is changed by only a small amount. The mass number is unchanged. The nucleus contains no electrons. Rather, b, g decay occurs when a neutron is changed into a proton within the nucleus. An unseen neutrino, n, accompanies each b, g decay. The number of protons, and thus the atomic number, is increased by one.

gRadiation Decay Gamma rays are a type of electromagnetic radiation that results from a redistribution of electric charge within a nucleus. A g ray is a high energy photon. For complex nuclei there are many different possible ways in which the neutrons and protons can be arranged within the nucleus. Gamma rays can be emitted when a nucleus undergoes a transition from one quantum energy configuration to another. Neither the mass number nor the atomic number is changed when a nucleus emits a g b, gray in the reaction

152Dy* 152Dy + g Fission Fission Probability When a neutron passes near to a heavy nucleus, for example uranium-235 (U-235), the neutron may be captured by the nucleus and this may or may not be followed by fission. Capture involves the addition of the neutron to the uranium nucleus to form a new compound nucleus. A simple example is U-238 + n U-239, which represents

formation of the nucleus U-239. The new nucleus may decay into a different nuclide. In this example, U-239 becomes Np-239 after emission of a beta particle (electron). In certain cases the initial capture is rapidly followed by the fission of the new nucleus. Whether fission takes place, and indeed whether capture occurs at all, depends on the velocity of the passing neutron and on the particular heavy nucleus involved. Fission Probability

Pfission n f ( En )dxdA The probability that fission or any another neutron-induced reaction will occur is described by the cross-section for that reaction. The cross-section may be imagined as an area surrounding the target nucleus and within which the incoming neutron must pass if the reaction is to take place. The fission and other cross sections increase greatly as the neutron velocity reduces for slow reaction fuels. For fast reaction fuels, a large activation energy requires high energy neutrons for fission

Fission Cross Sections Fission Fragments Using U-235 in a thermal reactor as an example, when a neutron is captured the total energy is distributed amongst the 236 nucleons (protons & neutrons) now present in the compound nucleus. This nucleus is relatively unstable, and it is likely to break into two fragments of around half the mass. These fragments are nuclei found around the middle

of the Periodic Table and the probabilistic nature of the break-up leads to several hundred possible combinations. Fission Fragments Fission Fragments and the Chain Reaction Neutron Emission Creation of the fission fragments is followed almost

instantaneously by emission of a number of neutrons (typically 2 or 3, average 2.5), which enable the chain reaction to be sustained keff neutrons _ produced neutrons _ lost

keff = 1 implies critical mass Want keff > 1 Fission Fragments About 85% of the energy released is initially the kinetic energy of the fission fragments. However, in solid fuel they can only travel a microscopic distance, so their energy becomes converted into heat. The balance of the energy comes from gamma rays emitted during or immediately following the fission process and from the kinetic energy of

the neutrons. Some of the latter are immediate (so-called prompt neutrons), but a small proportion (0.7% for U-235, 0.2% for Pu-239) is delayed, as these are associated with the radioactive decay of certain fission products. The longest delayed neutron group has a half-life of about 56 seconds Reactor Fuels U-235 is the only naturally occurring isotope which is thermally fissile, and it is present in natural uranium at a concentration of 0.7 percent. U-238 is the main naturally-occurring fertile isotope (99.3%).

The most common types of commercial power reactor use water for both moderator and coolant. Criticality may only be achieved with a water moderator if the fuel is enriched. Enrichment increases the proportion of the fissile isotope U-235 about five- or six-fold from the 0.7% of U-235 found in natural uranium. Enrichment is a physical process, usually relying on the small mass difference between atoms of the two isotopes U-238 and U-235. The enrichment processes in commercial use today require the uranium to be in a gaseous form and hence use the compound uranium hexafluoride (UF6). The two main enrichment (or isotope separation) processes are

diffusion (gas diffusing under pressure through a membrane containing microscopic pores) and centrifugation. In each case, a very small amount of isotope separation takes place in one pass through the process. Repeated separations are undertaken in successive stages, arranged in a cascade. Uranium Enrichment Plutonium

Recently Viewed Presentations

  • SS7E5 - The student will analyze different economic systems.

    SS7E5 - The student will analyze different economic systems.

    Trashketball Rules. Classroom split in half. First person to tap the board gets to answer the question. You must tap AFTER the question and answers have been read. Question must be answered within 5 seconds or it goes to the...
  • PowerPoint-presentatie


    (explanandum) in . organizational diagnosis < Intermezzo M&M variation > Current practice of causal analysis in business. Goals of causal analysis in business. Knowledge-oriented. Understand and explain . variations . of a quality variable. Diagnosethe designed .
  • Tires, Tubes &amp; Services

    Tires, Tubes & Services

    1. States will contact contractors directly to begin the Participating Addendum process. 2. States may have submitted Intents to Participate during solicitation, this will provide the information for contractors to contact states interested in signing a Participating Addendum. 3.
  • PWO Empowermentmeting

    PWO Empowermentmeting

    In mensentaal geeft dit laatste symboolaan dat er minder dan één kans op duizend is dat het geconstateerde resultaat toe te schrijven is aan toeval. 4. ... (Chen & Rossi, 1980) Realist Evaluation (Pawson& Tilley, 1997) Common Factors Model (Hubble,...
  • Cultural Criticism - California State University, Sacramento

    Cultural Criticism - California State University, Sacramento

    Cultural Criticism and Gender Criticism March 22, 2006 Defining culture Probably the most complex and contested term in the social sciences and humanities Definitions include: Practices—manifest rather than latent Shared by a group Culture in its various forms: Elite, mass,...
  • Subject Selection Parent Information Session Thursday, March 7th

    Subject Selection Parent Information Session Thursday, March 7th

    Workplace Pathway. Workplace and Apprenticeship Math will be offered in the . second semester. Students taking this math, can also take any other math course offered in semester one.
  • Daniel&#x27;s Dream - KevinHinckley.com

    Daniel's Dream - KevinHinckley.com

    The progress of the kingdoms of the world has been from east to west; the progress of the kingdom of God is from west to east, in a retrograde direction. This stone, according to Daniel 2:45, is to be "cut...
  • Quantum Features of Black Holes Jan de Boer,

    Quantum Features of Black Holes Jan de Boer,

    Jan de Boer, Amsterdam Paris, June 18, 2009 Based on: ... Bena, Wang, Warner; Denef, Moore In space-time, a very deep throat develops, which approximates the geometry outside a black hole ever more closely. None of these geometries has large...